Alumina Nanoparticles and Plants: Environmental Transformation, Bioaccumulation, and Phytotoxicity

  • Monika AsztemborskaEmail author


Aluminum oxide (alumina, Al2O3) nanoparticles (NPs) are one of the most abundantly manufactured metal oxides on a nanoscale. Nanoparticles are attractive for industry because of their exceptional properties; however, they simultaneously pose a threat for the environment. The below chapter discusses possible alumina nanoparticle transformations in water and soil, bioaccumulation by plants of aluminum originating from nanoparticles, and the main aspects of Al2O3 NP phytotoxicity.


  1. Amde M, Liu J, Tan Z et al (2017) Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review. Environ Pollut 230:250–267CrossRefPubMedGoogle Scholar
  2. Amist N, Singh NB, Yadav K et al (2017) Comparative studies of Al3+ ions and Al2O3 nanoparticles on growth and metabolism of cabbage seedlings. J Biotechnol 254:1–8CrossRefPubMedGoogle Scholar
  3. Asztemborska M, Steborowski R, Kowalska J et al (2015) Accumulation of aluminium by plants exposed to nano- and microsized particles of Al2O3. Int J Environ Res 9(1):109–116Google Scholar
  4. Burklew CE, Ashlock J, Winfrey WB et al (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One 7(5):e34783CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bystrzejewska-Piotrowska G, Asztemborska M et al (2012) Influence of earthworms on extractability of metals from soils contaminated with Al2O3, TiO2, Zn, and ZnO nanoparticles and microparticles of Al2O3. Pol J Environ Stud 21(2):313–319Google Scholar
  6. Dinesh R, Anandaraj M, Srinivasan V et al (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173–174:19–27CrossRefGoogle Scholar
  7. Doshi R, Braida W, Christodoulatos C et al (2008) Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities. Environ Res 106:96–303CrossRefGoogle Scholar
  8. Future Markets Inc. (2013) The global market for metal oxide nanoparticles to 2020, Technology report No 75Google Scholar
  9. Ghosh S, Mashayekhi H, Pan B et al (2008) Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter. Langmuir 24(21):12385–12391CrossRefPubMedGoogle Scholar
  10. Jin Y, Fan X, Li X et al (2017) Distinct physiological and molecular responses in Arabidopsis thaliana exposed to aluminum oxide nanoparticles and ionic aluminum. Environ Pollut 228:517–527CrossRefPubMedGoogle Scholar
  11. Juhel G, Batisse E, Hugues Q et al (2011) Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol 105:328–336CrossRefPubMedGoogle Scholar
  12. Keller A, McFerran S, Lazareva A et al (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15(6):1–17CrossRefGoogle Scholar
  13. Lee CW, Mahendra S, Zodrow K et al (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29(3):669–675CrossRefPubMedGoogle Scholar
  14. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250CrossRefPubMedGoogle Scholar
  15. Rahman T, George J, Shipley HJ (2013) Transport of aluminum oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration. Sci Total Environ 463–464:565–571CrossRefPubMedGoogle Scholar
  16. Rajeshwari A, Kavitha S, Alex SA et al (2015) Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip—effects of oxidative stress generation and biouptake. Environ Sci Pollut Res Int 22(14):11057–11066CrossRefPubMedGoogle Scholar
  17. Riahi-Madvar A, Rezaee F, Jalali V (2012) Effects of alumina nanoparticles on morphological properties and antioxidant system of Triticum aestivum. Iran J Plant Physiol 3(1):595–603Google Scholar
  18. Ryan PR, DiTomaso JM, Kochian LV (1993) Aluminium toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446CrossRefGoogle Scholar
  19. Schultz C, Powell K, Crossley A et al (2015) Analytical approaches to support current understanding of exposure, uptake and distributions of engineered nanoparticles by aquatic and terrestrial organisms. Ecotoxicology 24:239–261CrossRefPubMedGoogle Scholar
  20. Vardar F, Ismailoglu I, Inan D et al (2011) Determination of stress responses induced by aluminum in maize (Zea mays). Acta Biol Hung 62:156–170CrossRefPubMedGoogle Scholar
  21. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132CrossRefPubMedPubMedCentralGoogle Scholar
  22. Yanik F, Vardar F (2015) Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water Air Soil Pollut 226:296CrossRefGoogle Scholar
  23. Yanik F, Ayturk O, Vardar F (2017) Programmed cell death evidence in wheat (Triticum aestivum L.) roots induced by aluminum oxide (Al2O3) nanoparticles. Caryologia 70(2):112–119CrossRefGoogle Scholar
  24. Yoon D, Woo D, Kim JH et al (2011) Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium. J Nanopart Res 13:2543–2551CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Biology, Isotope LaboratoryUniversity of WarsawWarsawPoland

Personalised recommendations