Phytotoxicity of Nanoscale Zerovalent Iron (nZVI) in Remediation Strategies

  • Mar Gil-DíazEmail author
  • M. Carmen Lobo


In recent years the use of nanoscale zerovalent iron (nZVI) for environmental remediation purposes has received considerable attention. This chapter presents an overview about the state-of-the-art technology on different types of nZVI particles, their reactivity, applications, and impact on plants. The use of nZVI for the treatment of organic pollutants can lead to their total degradation, whereas for the case of metal(loid) pollution, the efficacy of the strategy is measured by the reduction of the available metal(loid) or its immobilization. The published studies about the use of nZVI on polluted soils did not find negative effects; on the contrary, the use of these nanoparticles led to a decrease of the soil toxicity due to the immobilization and/or degradation of the pollutants. The phytotoxicity of nZVI strongly depends on the nZVI type, dose, plant species, time of the exposure, and medium of application. In addition, other compounds that are added to the nanoparticles to improve their effectiveness can constitute a new source of pollution to the medium that should be controlled. Taking into account that nanoremediation is a promising strategy with potential application in contaminated sites, it is necessary to perform studies on contaminated soils with different plant species and different types and doses of nZVI analyzing the effect on the growth of the plants and at cellular scale. Monitoring studies at long term are also relevant due to the scarce data on the stability of the nanoremediation process.



This work has been supported by the Projects REHABILITA CTM2016-78222-C2-1-R (MINECO, Spain) and FP-16-NANOREMED (IMIDRA, Comunidad de Madrid, Spain).


  1. Arancibia-Miranda N, Baltazar SE, García A et al (2016) Nanoscale zero valent supported by Zeolite and Montmorillonite: template effect of the removal of lead ion from an aqueous solution. J Hazard Mater 301:371–380PubMedCrossRefGoogle Scholar
  2. Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. Rev World J Microbiol Biotechnol 32:180CrossRefGoogle Scholar
  3. Bardos P, Bone B, Černík M et al (2015) Nanoremediation and international environmental restoration markets. Remediation J 25:83–94CrossRefGoogle Scholar
  4. Berge ND, Ramsburg CA (2009) Oil-in-water emulsions for encapsulated delivery of reactive iron particles. Environ Sci Technol 43:5060–5066PubMedCrossRefGoogle Scholar
  5. Bezbaruah AN, Thompson JM, Chisholm BJ (2009) Remediation of alachlor and atrazine contaminated water with zero-valent iron nanoparticles. J Environ Sci Health B 44:518–524PubMedCrossRefGoogle Scholar
  6. Bitsch R, Matz P, Kvapil P et al (2017) NanoRem bulletin: NanoRem pilot site – Solvay, Switzerland: nanoscale zero-valent iron remediation of chlorinated solvents. Accessed 01 Dec 2017
  7. Capaldi Arruda SC, Diniz Silva AL, Moretto Galazzi R et al (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705CrossRefGoogle Scholar
  8. Chen SS, Hsu HD, Li CW (2004) A new method to produce nanoscale iron for nitrate removal. J Nanopart Res 6:639–647CrossRefGoogle Scholar
  9. Chen Z, Jin X, Chen Z et al (2011) Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. J Colloid Interface Sci 363:601–607PubMedCrossRefGoogle Scholar
  10. Chen Z, Cheng Y, Chen Z et al (2012) Kaolin-supported nanoscale zero-valent iron for removing cationic dye–crystal violet in aqueous solution. J Nanopart Res 14:899CrossRefGoogle Scholar
  11. Chen H, Cao Y, Wei E et al (2016) Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water. Chemosphere 146:32–39PubMedCrossRefGoogle Scholar
  12. Comba S, Sethi R (2009) Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res 43:3717–3726PubMedCrossRefGoogle Scholar
  13. Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospect for an emerging water treatment. J Hazard Mater 211–212:112–125PubMedCrossRefGoogle Scholar
  14. Crane RA, Pullin H, Macfarlane J et al (2015) Field application of iron and iron-nickel nanoparticles for the ex situ remediation of a uranium-bearing mine water effluent. J Environ Eng 141:65–72CrossRefGoogle Scholar
  15. Dhillon GS, Brar SK, Kaur S et al (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32:49–73PubMedCrossRefGoogle Scholar
  16. Diao M, Yao M (2009) Use of zerovalent iron nanoparticles in inactivating microbes. Water Res 43:5243–5251CrossRefPubMedGoogle Scholar
  17. Dong M, Wang X, Huang F et al (2012) Toxicity of Fe0 nanoparticles on the denitrifying bacteria-Alcaligenes eutrophus. Adv Mat Res 343–344:889–894Google Scholar
  18. Dong J, Wen C, Liu D et al (2015) Study on degradation of nitrobenzene in groundwater using emulsified nano-zero-valent iron. J Nanopart Res 17:31CrossRefGoogle Scholar
  19. Dong H, Deng J, Xie Y et al (2017) Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. J Hazard Mater 332:79–86PubMedCrossRefGoogle Scholar
  20. Elliott DW, Lien HL, Zhang W (2009) Degradation of lindane by zero-valent iron nanoparticles. J Environ Eng 135:317–324CrossRefGoogle Scholar
  21. El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49PubMedCrossRefGoogle Scholar
  22. El-Temsah YS, Oughton DH, Joner EJ (2013) Effects of nano-sized zero-valent iron on DDT degradation and residual toxicity in soil: a column experiment. Plant Soil 368:189–200CrossRefGoogle Scholar
  23. El-Temsah YS, Sevcu A, Bobcikova K et al (2016) DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere 144:2221–2228PubMedCrossRefGoogle Scholar
  24. Ericson B, Caravanos J, Chatham-Stephens K et al (2013) Approaches to systematic assessment of environmental exposures posed at hazardous waste sites in the developing world: the toxic sites identification program. Environ Monit Assess 185:1755PubMedCrossRefGoogle Scholar
  25. Esumi K (2002) Adsolubilization of organic pollutants. In: Somasudaran P (ed) Encyclopedia of surface and colloid science, vol 1. Taylor and Francis, Boca RatonGoogle Scholar
  26. Fan W, Cheng Y, Yu S et al (2015) Preparation of wrapped nZVI particles and their application for the degradation of trichloroethylene (TCE) in aqueous solution. J Water Reuse Desalin 5:335–343CrossRefGoogle Scholar
  27. Fang Z, Chen J, Qiu X et al (2011) Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination 268:60–67CrossRefGoogle Scholar
  28. Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36Google Scholar
  29. Gerlach R, Cunningham AB, Caccavo F (2000) Dissimilatory iron-reducing bacteria can influence the reduction of carbon tetrachloride by iron metal. Environ Sci Technol 34:2461–2464CrossRefGoogle Scholar
  30. Ghosh I, Mukherjee A, Mukherjee A (2017) In planta genotoxicity of nZVI: influence of colloidal stability on uptake, DNA damage, oxidative stress and cell death. Mutagenesis 32:371–387PubMedCrossRefGoogle Scholar
  31. Gil-Díaz M, Alonso J, Rodríguez-Valdés E et al (2014a) Reducing the mobility of arsenic in brownfield soil using stabilised zero-valent iron nanoparticles. J Environ Sci Health A 49:1361–1369CrossRefGoogle Scholar
  32. Gil-Díaz M, Pérez-Sanz A, Vicente MA et al (2014b) Immobilisation of Pb and Zn in soils using stabilised zero-valent iron nanoparticles: effects on soil properties. Clean Soil Air Water 42:1776–1784CrossRefGoogle Scholar
  33. Gil-Díaz M, Ortiz LT, Costa G et al (2014c) Immobilization and leaching of Pb and Zn in an acidic soil treated with zerovalent iron nanoparticles (nZVI): physicochemical and toxicological analysis of leachates. Water Air Soil Pollut 225:1990CrossRefGoogle Scholar
  34. Gil-Díaz M, Diez-Pascual S, González A et al (2016a) A nanoremediation strategy for the recovery of an As-polluted soil. Chemosphere 149:137–145PubMedCrossRefGoogle Scholar
  35. Gil-Díaz M, González A, Alonso J et al (2016b) Evaluation of the stability of a nanoremediation strategy using barley plants. J Environ Manage 165:150–158PubMedCrossRefGoogle Scholar
  36. Gil-Díaz M, Alonso J, Rodríguez-Valdés E et al (2017a) Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil. Sci Total Environ 584–585:1324–1332PubMedCrossRefGoogle Scholar
  37. Gil-Díaz M, Pinilla P, Alonso J et al (2017b) Viability of a nanoremediation process in single or multi-metal(loid)contaminated soils. J Hazard Mater 321:812–819PubMedCrossRefGoogle Scholar
  38. Granqvist C, Buhrmann R, Wyns J et al (1976) Far-infrared absorption in ultrafine Al particles. Phys Rev Lett 37:625–629CrossRefGoogle Scholar
  39. Grieger KD, Fjordbøge A, Hartmann NB et al (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118:165–183PubMedCrossRefGoogle Scholar
  40. Hanay O, Türk H (2013) Comprehensive evaluation of adsorption and degradation of tetracycline and oxytetracycline by nanoscale zero-valent iron. Desalin Water Treat 53:1–9Google Scholar
  41. Hara SO, Krug T, Quinn J et al (2006) Field and laboratory evaluation of the treatment of DNAPL source zones using emulsified zero-valent iron. Remediat J 16:35–56CrossRefGoogle Scholar
  42. He F, Zhao D (2005) Preparation and characterization of a new class of starch stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39:3314–3320PubMedCrossRefGoogle Scholar
  43. Hoag GE, Collins JB, Holcomb JL et al (2009) Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671–8677CrossRefGoogle Scholar
  44. Hunt WH (2004) Nanomaterials: nomenclature, novelty, and necessity. JOM 56:13–18CrossRefGoogle Scholar
  45. Jamei MR, Khosravi MR, Anvaripour B (2014) A novel ultrasound assisted method in synthesis of NZVI particles. Ultrason Sonochem 21:226–233PubMedCrossRefGoogle Scholar
  46. Jarosova B, Filip J, Hilscherova K et al (2015) Can zero-valent iron nanoparticles remove waterborne estrogens? J Environ Manage 150:387–392PubMedCrossRefGoogle Scholar
  47. Jørgenson KD, Lee PF, Kanavillil N (2013) Ecological relationships of wild rice, Zizania spp. 11. Electron microscopy study of iron plaques on the roots of northern wild rice (Zizania palustris). Botany 91:189–201CrossRefGoogle Scholar
  48. Kalaiarasi R, Jayallakshmi N, Venkatachalam P (2010) Phytosynthesis of nanoparticles and its applications. Plant Cell Biotechnol Mol Biol 11:1–16Google Scholar
  49. Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1813–1831PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kharisov BI, Dias HVR, Kharissova OV et al (2012) Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Adv 2:9325–9358CrossRefGoogle Scholar
  51. Kim HJ, Phenrat T, Tilton RD et al (2009) Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ Sci Technol 43:3824–3830PubMedCrossRefGoogle Scholar
  52. Kim JY, Park HJ, Lee C et al (2010) Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous ion. Appl Environ Microbiol 76:7668–7670PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kim SA, Kamala-Kannan S, Lee KJ et al (2013) Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite. Chem Eng J 217:54–60CrossRefGoogle Scholar
  54. Kim JH, Lee Y, Kim EJ et al (2014) Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48:3477–3485CrossRefPubMedGoogle Scholar
  55. Kim JH, Oh Y, Yoon H et al (2015) Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environ Sci Technol 49:1113–1119PubMedCrossRefGoogle Scholar
  56. Klaine SJ, Alvarez PJJ, Batley GE et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851CrossRefPubMedGoogle Scholar
  57. Klimkova S, Cernik M, Lacinova L et al (2011) Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere 82:1178–1184PubMedCrossRefGoogle Scholar
  58. Kotov YA (2009) The electrical explosion of wire: a method for the synthesis of weakly aggregated nanopowders. Nanotechnol Russ 4:415–424CrossRefGoogle Scholar
  59. Kuiken T (2010) Cleaning up contaminated waste sites: is nanotechnology the answer? Nano Today 5:6–8CrossRefGoogle Scholar
  60. Kvapil P, Černík M, Lacinová L et al (2010) Field scale application, case studies from the EU (CZR). Accessed 01 Dec 2017
  61. Laszlo T, Szabo M (2017) NanoRem bulletin: NanoRem pilot site – Balassagyarmat, Hungary: in situ groundwater remediation using Carbo-Iron® nanoparticles. Accessed 01 Dec 2017
  62. Lebedev SV, Korotkova AM, Osipova EA (2014) Influence of Fe0 nanoparticles, magnetite Fe3O4 nanoparticles, and iron (II) sulfate (FeSO4) solutions on the content of photosynthetic pigments in Triticum vulgare. Russ J Plant Physiol 61:564–569CrossRefGoogle Scholar
  63. Lefevre E, Bossa N, Wiesner MR et al (2016) A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities. Sci Total Environ 565:889–901PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lei C, Sun Y, Tsang DCW et al (2018) Environmental transformations and ecological effects of iron-based nanoparticles. Environ Pollut 232:10–30PubMedCrossRefGoogle Scholar
  65. Lemming G, Friis-Hansen P, Bjerg PL (2010) Risk-based economic decision analysis of remediation options at a PCE-contaminated site. J Environ Manage 91:1169–1182PubMedCrossRefGoogle Scholar
  66. Li X, Zhang W (2007) Sequestration of metal cations with zerovalent iron nanoparticles–a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111:6939–6946CrossRefGoogle Scholar
  67. Li X, Elliott DW, Zhang W (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mat Sci 31:11–22CrossRefGoogle Scholar
  68. Li XQ, Brown DG, Zhang WX (2007) Stabilization of biosolids with nanoscale zero-valent iron (nZVI). J Nanopart Res 9:233–243CrossRefGoogle Scholar
  69. Li S, Yan W, Zhang W (2009) Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chem 11:1618–1626CrossRefGoogle Scholar
  70. Li Z, Greden K, Alvarez PJJ et al (2010) Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ Sci Technol 44:3462–3467PubMedCrossRefGoogle Scholar
  71. Li S, Wan W, Yan W et al (2014) Nanoscale zero-valent iron (nZVI) for the treatment of concentrated Cu(II) wastewater: a field demonstration. Environ Sci: Process Impacts 16:524–533Google Scholar
  72. Li X, Yang Y, Gao B et al (2015) Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations. PLoS One 10(4):e0122884. CrossRefPubMedPubMedCentralGoogle Scholar
  73. Li X, Zhao Y, Xi B et al (2017) Decolorization of methyl orange by a new clay-supported nanoscale zero-valent iron: synergetic effect, efficiency optimization and mechanism. J Environ Sci (China) 52:8–17CrossRefGoogle Scholar
  74. Libralato G, Costa Devoti A, Zanella M et al (2016) Phytotoxicity of ionic, micro- and nano-sized iron in three plant species. Ecotoxicol Environ Safe 123:81–88CrossRefGoogle Scholar
  75. Lien HL, Zhang WX (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloid Surface A 191:97–105CrossRefGoogle Scholar
  76. Liu YQ, Majetich SA, Tilton RD et al (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345PubMedCrossRefGoogle Scholar
  77. Liu WJ, Qian TT, Jiang H (2014) Bimetallic Fe nanoparticles: recent advances in synthesis and application in catalytic elimination of environmental pollutants. Chem Eng J 236:448–463CrossRefGoogle Scholar
  78. Liu M, Wang Y, Chen L et al (2015) Mg(OH)2 supported nanoscale zero valent iron enhancing the removal of Pb(II) from aqueous solution. ACS Appl Mater Interfaces 7:7961–7969PubMedCrossRefGoogle Scholar
  79. Lobo MC, Pérez-Sanz A, Martínez-Iñigo MJ et al (2009) Influence of coupled electrokinetic-phytoremediation on soil remediation. In: Reddy KR, Cameselle C (eds) Electrochemical remediation technologies for polluted soils, sediments and groundwater. Wiley, Hoboken, pp 417–437CrossRefGoogle Scholar
  80. Lv X, Xue X, Jiang G et al (2014) Nanoscale zero-zalent iron (nZVI) assembled on magnetic Fe3O4/graphene for chromium (VI) removal from aqueous solution. J Colloid Interface Sci 417:51–59PubMedCrossRefGoogle Scholar
  81. Ma X, Geisler-Lee J, Deng Y et al (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061CrossRefPubMedGoogle Scholar
  82. Ma X, Gurung A, Deng Y (2013) Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci Total Environ 443:844–849CrossRefPubMedGoogle Scholar
  83. Machado S, Pinto SL, Grosso JP et al (2013) Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci Total Environ 445–446:1–8PubMedCrossRefGoogle Scholar
  84. Madhavi V, Prasad TNVKV, Reddy BR et al (2014) Appl Nanosci 4:477–484CrossRefGoogle Scholar
  85. Marsalek M, Jancula D, Marsalkova E et al (2012) Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria. Environ Sci Technol 46:2316–2323PubMedCrossRefGoogle Scholar
  86. Martínez-Fernández D, Vítková M, Michálková Z et al (2017) Engineered nanomaterials for phytoremediation of metal/metalloid-contaminated soils: implications for plant physiology. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants, vol 5. Springer, ChamGoogle Scholar
  87. Mu Y, Jia F, Ai Z et al (2017) Iron oxide shell mediated environmental remediation properties of nano zero-valent iron. Environ Sci Nano 4:27–45CrossRefGoogle Scholar
  88. Mueller NC, Nowack B (2010) Nano zero valent iron – THE solution for water and soil remediation? Report of the ObservatoryNANO. Accessed 01 Dec 2017
  89. Mueller NC, Braun J, Bruns J et al (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19:550–558CrossRefGoogle Scholar
  90. O’Carroll D, Sleep B, Krol M et al (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122CrossRefGoogle Scholar
  91. Otaegi N, Cagigal E, Braun J et al (2016) Testing on emerging nanoparticles for arsenic removal under real conditions on a pilot field site, in Asturias, Spain. http://www.nanoremeu/toolbox/FC1_postersaspx. Accessed 01 Dec 2017
  92. Park H, Park YM, Yoo KM et al (2009) Reduction of nitrate by resin-supported nanoscale zero-valent iron. Water Sci Technol 59:2153–2157PubMedCrossRefGoogle Scholar
  93. PEN (2017a) Project on emerging nanotechnologies. inventories. http://www.nanotechprojectorg/inventories/. Accessed 01 Dec 2017
  94. PEN (2017b) Project on emerging nanotechnologies. inventories remediation map. http://www.nanotechprojectorg/inventories/remediation_map/. Accessed 01 Dec 2017
  95. Peng X, Liu X, Zhou Y et al (2017) New insights into the activity of a biochar supported nanoscale zerovalent iron composite and nanoscale zero valent iron under anaerobic or aerobic conditions. RSC Adv 7:8755–8761CrossRefGoogle Scholar
  96. Pustovalov AV, Zhuravkov SP (2015) Production of iron nanopowders by the electric explosion of wire. Adv Mat Res 1097:3–7Google Scholar
  97. Qiu XH, Fang ZQ, Liang B et al (2011) Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres. J Hazard Mater 193:70–81PubMedCrossRefGoogle Scholar
  98. Qu G, Kou L, Wang T et al (2017) Evaluation of activated carbon fiber supported nanoscale zero-valent iron for chromium (VI) removal from groundwater in a permeable reactive column. J Environ Manage 201:378–387PubMedCrossRefGoogle Scholar
  99. Quinn J, Geiger C, Clausen C et al (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol 39:1309–1318PubMedCrossRefGoogle Scholar
  100. Rico CM, Majumdar S, Duarte-Gardea M et al (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. Environ Sci Technol 59:3485–3498Google Scholar
  101. Saaltink RM, Dekker SC, Eppinga MB et al (2017) Plant-specific effects of iron-toxicity in wetlands. Plant Soil 416:83–96CrossRefGoogle Scholar
  102. Saif S, Tahir A, Chen Y (2016) Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 6:209PubMedCentralCrossRefPubMedGoogle Scholar
  103. Saleh N, Sirk K, Liu Y et al (2007) Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ Eng Sci 24:45–57CrossRefGoogle Scholar
  104. Schrick B, Hydutsky BW, Blough JL et al (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16:2187–2193CrossRefGoogle Scholar
  105. Ševců A, El-Temsah YS, Joner EJ et al (2011) Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes Environ 26:271–281PubMedCrossRefGoogle Scholar
  106. Ševců A, El-Temsah YS, Filip J et al (2017) Zero-valent iron particles for PCB degradation and an evaluation of their effects on bacteria, plants, and soil organisms. Environ Sci Pollut Res 26:21191–21202CrossRefGoogle Scholar
  107. Seyedi SM, Rabiee H, Shahabadi SMS et al (2017) Synthesis of zero-valent iron nanoparticles via electrical wire explosion for efficient removal of heavy metals. Clean Soil Air Water 45:1600139CrossRefGoogle Scholar
  108. Shi LN, Zhang X, Chen ZL (2011) Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res 45:886–892PubMedCrossRefGoogle Scholar
  109. Siddiqi KS, Husen A (2017) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12:92PubMedPubMedCentralCrossRefGoogle Scholar
  110. Singh R, Misra V (2015) Stabilization of zero-valent iron nanoparticles: role of polymers and surfactants. In: Aliofkhazraei M (ed) Handbook of nanoparticles. Springer, ChamGoogle Scholar
  111. Singh R, Singh A, Misra V et al (2011) Degradation of lindane contaminated soil using zero-valent iron nanoparticles. J Biomed Nanotechnol 7:175–176PubMedCrossRefGoogle Scholar
  112. Song H, Carraway ER (2005) Reduction of chlorinated ethanes by nanosized zerovalent iron: kinetics, pathways, and effects of reaction conditions. Environ Sci Technol 39:6237–6245PubMedCrossRefGoogle Scholar
  113. Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632CrossRefGoogle Scholar
  114. Stejskal V, Lederer T, Kvapil P et al (2017) NanoRem bulletin: NanoRem pilot site – Spolchemie I, Czech Republic: nanoscale zero-valent iron remediation of chlorinated hydrocarbons. Accessed 01 Dec 2017
  115. Su C, Puls RW, Krug TA et al (2012) A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Res 46:5071–5084PubMedCrossRefGoogle Scholar
  116. Taghavy A, Costanza J, Pennell KD et al (2010) Effectiveness of nanoscale zero-valent iron for treatment of a PCE–DNAPL source zone. J Contam Hydrol 118:128–142PubMedCrossRefGoogle Scholar
  117. Taniguchi N (1974) On the basic concept of nanotechnology. In: Proceedings of the International Conference on Production Engineering, Tokyo, Part II. Japan Society of Precision Engineering, TokyoGoogle Scholar
  118. The Royal Society and the Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. Accessed 01 Dec 2017
  119. Thomas K, Aguar P, Kawasaki H et al (2006) Research strategies for safety evaluation of nanomaterials, part VIII: international efforts to develop risk-based safety evaluations for nanomaterials. Toxicol Sci 92:23–32PubMedCrossRefGoogle Scholar
  120. Thomé A, Reddy KR, Reginatto C et al (2015) Review of nanotechnology for soil and groundwater remediation: Brazilian perspectives. Water Air Soil Pollut 226:121CrossRefGoogle Scholar
  121. Tiraferri A, Sethi R (2009) Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J Nanopart Res 11:635–645CrossRefGoogle Scholar
  122. Tiraferri A, Chen KL, Sethi R et al (2008) Reduced aggregation and sedimentation of zerovalent iron nanoparticles in the presence of guar gum. J Colloid Interface Sci 324:71–79PubMedCrossRefGoogle Scholar
  123. Toli A, Chalastara K, Mystrioti C et al (2016) Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr(VI) contaminated waters. Environ Pollut 214:419–429PubMedCrossRefGoogle Scholar
  124. Tosco T, Petrangeli Papini M, Cruz Viggi C et al (2014) Nanoscale zerovalent iron particles for groundwater remediation: a review. J Clean Prod 77:10–21CrossRefGoogle Scholar
  125. Trujillo-Reyes J, Majumdar S, Botez CE et al (2014) Exposure studies of core–shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: are they a potential physiological and nutritional hazard? J Hazard Mater 267:255–263PubMedCrossRefGoogle Scholar
  126. USEPA (United States Environmental Protection Agency) (2004) Cleaning up the nation’s waste sites: markets and technology trends. Accessed 01 Dec 2017
  127. USEPA (United States Environmental Protection Agency) (2005) Workshop on nanotechnology for site remediation. Accessed 01 Dec 2017
  128. USEPA (United States Environmental Protection Agency) (2014) Technical fact sheet – nanomaterials. EPA 505-F-14-002. Accessed 01 Dec 2017
  129. van Liedekerke M, Prokop G, Rabl-Berger S et al (2014) Progress in the management of contaminated sites in Europe. Joint Research Centre, Report EUR 26376 EN. Accessed 01 Dec 2017
  130. Vance ME, Kuiken T, Vejerano EP et al (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 21:1769–1780CrossRefGoogle Scholar
  131. Vítková M, Rákosová S, Michálková Z et al (2017) Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time. J Environ Manage 186:268–276PubMedCrossRefGoogle Scholar
  132. Wang C, Zhang W (1997) Nanoscale metal particles for dechlorination of PCE and PCBs. Environ Sci Technol 31:2154–2156CrossRefGoogle Scholar
  133. Wang Y, Fang Z, Kang Y et al (2014) Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. J Hazard Mater 275:230–237PubMedCrossRefGoogle Scholar
  134. Wang J, Liu G, Li T et al (2015) Zero-valent iron nanoparticles (NZVI) supported by kaolinite for CuII and NiII ion removal by adsorption: kinetics, thermodynamics, and mechanism. Aust J Chem 68:1305–1315Google Scholar
  135. Wang J, Fang Z, Cheng W et al (2016) Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Environ Pollut 210:338–345PubMedCrossRefGoogle Scholar
  136. Wang Z, Choi F, Acosta E (2017) Effect of surfactants on zero-valent iron nanoparticles (NZVI) reactivity. J Surfactant Deterg 20:577–588CrossRefGoogle Scholar
  137. Wei C, Li X (2013) Surface coating with Ca(OH)2 for improvement of the transport of nanoscale zero-valent iron (nZVI) in porous media. Water Sci Technol 68:2287–2293PubMedCrossRefGoogle Scholar
  138. Wei YT, Wu S, Yang SW et al (2012) Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. J Hazard Mater 211–212:373–380PubMedCrossRefGoogle Scholar
  139. WHO (World Health Organization) (2016) An estimated 12.6 million deaths each year are attributable to unhealthy environments Accessed 01 Dec 2017
  140. Wijesekara SSRMDHR, Basnayake BFA, Vithanage M (2014) Organic-coated nanoparticulate zero valent iron for remediation of chemical oxygen demand (COD) and dissolved metals from tropical landfill leachate. Environ Sci Pollut Res 21:7075–7087CrossRefGoogle Scholar
  141. Wu D, Shen Y, Ding A et al (2013) Effects of nanoscale zero-valent iron particles on biological nitrogen and phosphorus removal and microorganisms in activated sludge. J Hazard Mater 262:649–655PubMedCrossRefGoogle Scholar
  142. Wu J, Xie Y, Fang Z et al (2016) Effects of Ni/Fe bimetallic nanoparticles on phytotoxicity and translocation of polybrominated diphenyl ethers in contaminated soil. Chemosphere 162:235–242PubMedCrossRefGoogle Scholar
  143. Xue D, Sethi R (2012) Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles. J Nanopart Res 14:1239CrossRefGoogle Scholar
  144. Yan W, Herzing AA, Kiely CJ et al (2010) Nanoscale zerovalent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water. J Contam Hydrol 118:96–104PubMedCrossRefGoogle Scholar
  145. Yan W, Lien HL, Koel BE et al (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci: Process Impacts 15:63–77Google Scholar
  146. Yirsaw BD, Megharaj M, Chen Z et al (2016) Environmental application and ecological significance of nano-zero valent iron. J Environ Sci 44:88–98CrossRefGoogle Scholar
  147. Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332CrossRefGoogle Scholar
  148. Zhang W, Wang C, Lien H (1998) Catalytic reduction of chlorinated hydrocarbons by bimetallic particles. Catal Today 40:387–395CrossRefGoogle Scholar
  149. Zhang MY, Wang Y, Zhao DZ et al (2010) Immobilization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles. Chin Sci Bull 55:365–372CrossRefGoogle Scholar
  150. Zhang Y, Li Y, Dai C et al (2014) Sequestration of Cd(II) with nanoscale zero-valent iron (nZVI): characterization and test in a two-stage system. Chem Eng J 244:218–226CrossRefGoogle Scholar
  151. Zhou Z, Dai C, Zhou X et al (2015) The removal of antimony by novel NZVI-zeolite: the role of iron transformation. Water Air Soil Pollut 226:76CrossRefGoogle Scholar
  152. Zhu HJ, Jia YF, Wu X et al (2009) Removal of arsenic from water by supported nano zerovalent iron on activated carbon. J Hazard Mater 172:1591–1596PubMedCrossRefGoogle Scholar
  153. Zhuang Y, Jin L, Luthy RG (2012) Kinetics and pathways for the debromination of polybrominated diphenyl ethers by bimetallic and nanoscale zerovalent iron: Effects of particle properties and catalyst. Chemosphere 89:426–432PubMedPubMedCentralCrossRefGoogle Scholar
  154. Zou Y, Wang X, Khan A et al (2016) Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol 50:7290–7304PubMedCrossRefGoogle Scholar
  155. Zuverza-Mena N, Martínez-Fernández D, Du W et al (2017) Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses – a review. Plant Physiol Biochem 110:236–264CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IMIDRA, Finca “El Encín”Alcalá de HenaresSpain

Personalised recommendations