Polarity Inversion and Electron Carrier Generation in III-Nitride Compounds

Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 269)

Abstract

In this chapter, we consider two topics based on theoretical calculations; the surface polarity inversion during the film growth and the electron-carrier generation by structural defects in III-nitride compounds. Some of unique features of III-nitride compounds originate from their wurtzite crystal structure.

References

  1. 1.
    M. Murayama, T. Nakayama, Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. Phys. Rev. B 49, 4710 (1994)CrossRefGoogle Scholar
  2. 2.
    X. Wang, A.Yoshikawa, Molecular beam epitaxy growth of GaN, AlN and InN. Prog. Cryst. Growth Charact. Mater. 48/49, 42 (2004)CrossRefGoogle Scholar
  3. 3.
    T. Auzelle, B. Haas, A. Minj, C. Bougerol, J.-L. Rouvière, A. Cros, J. Colchero, B. Daudin, The influence of AlN buffer over the polarity and the nucleation of self-organized GaN nanowires. J. Appl. Phys. 117, 245303 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Yoshikawa, N. Hashimoto, N. Kikukawa, S.B. Che, Y. Ishitani, Growth of InN quantum dots on N-polarity GaN by molecular-beam epitaxy. Appl. Phys. Lett. 86, 153115 (2005)CrossRefGoogle Scholar
  5. 5.
    Y. Kangawa, K. Kakimoto, T. Ito, A. Koukitu, Thermodynamic stability of In1–x –yGaxAlyN on GaN and InN. Phys. Status Solidi C 3, 1700 (2006)CrossRefGoogle Scholar
  6. 6.
    N. Kawaguchi, K. Hida, Y. Kangawa, Y. Kumagai, A. Koukitu, Pulse laser assisted MOVPE for InGaN with high indium content. Phys. Status Solidi A 201, 2846 (2004)Google Scholar
  7. 7.
    R. Katayama, Y. Fukuhara, M. Kakuda, S. Kuboya, K. Onabe, S. Kurokawa, N. Fujii, T. Matsuoka, Optical properties of the periodic polarity-inverted GaN waveguides. Proc. SPIE 8268, 826814 (2012)CrossRefGoogle Scholar
  8. 8.
    D.H. Lim, K. Xu, S. Arima, A. Yoshikawa, K. Takahashi, Polarity inversion of GaN films by trimethyl–aluminum preflow in low-pressure metalorganic vapor phase epitaxy growth. J. Appl. Phys. 91, 6461 (2002)CrossRefGoogle Scholar
  9. 9.
    C. Li, H. Liu, S.J. Chua, Influences of group-III source preflow on the polarity, optical, and structural properties of GaN grown on nitridated sapphire substrates by metal-organic chemical vapor deposition. J. Appl. Phys. 117, 125305 (2015)CrossRefGoogle Scholar
  10. 10.
    T. Nakayama, J. Mikami, Ultrathin metal layers to convert surface polarity of nitride semiconductors. Phys. Status Solidi B 242, 1209 (2005)CrossRefGoogle Scholar
  11. 11.
    J. Fritsch, O.F. Sankey, K.E. Schmidt, J.B. Page, Ab initio calculation of the stoichiometry and structure of the (0001) surfaces of GaN and AlN. Phys. Rev. B 57, 15360 (1998)CrossRefGoogle Scholar
  12. 12.
    K. Shiraishi, A new slab model approach for electronic structure calculation of polar semiconductor surface. J. Phys. Soc. Jpn. 59, 3455 (1990)CrossRefGoogle Scholar
  13. 13.
    Computer program package TAPP (Tokyo Ab-initio Program Package) and xTAPP, University of Tokyo 1983–2016Google Scholar
  14. 14.
    T. Nakayama, Y. Kangawa, K. Shiraishi, Atomic structures and electronic properties of semiconductor interfaces, in Comprehensive Semiconductor Science and Technology, ed. by P. Bhattacharya, R. Fomari, H. Kamimura, vol. I. (Elsevier B.V., Amsterdam, 2011), pp. 113–174CrossRefGoogle Scholar
  15. 15.
    J.E. Northrup, J. Neugebauer, R.M. Feenstra, A.R. Smith, Structure of GaN(0001): The laterally contracted Ga bilayer model. Phys. Rev. B 61, 9932 (2000)CrossRefGoogle Scholar
  16. 16.
    Y. Kangawa, T. Akiyama, T. Ito, K. Shiraishi, T. Nakayama, Surface stability and growth kinetics of compound semiconductors: an Ab initio-based approach. Materials 6, 3309 (2013)CrossRefGoogle Scholar
  17. 17.
    T. Harumoto, T. Sannomiya, Y. Matsukawa, S. Muraishi, J. Shi, Y. Nakamura, H. Sawada, T. Tanaka, Y. Tanishiro, K. Takayanagi, Controlled polarity of sputter-deposited aluminum nitride on metals observed by aberration corrected scanning transmission electron microscopy. J. Appl. Phys. 113, 084306 (2013)CrossRefGoogle Scholar
  18. 18.
    T. Nakayama, Y. Takei, Surface strain and hexagonal/cubic polymorphism in InGaN epitaxy: first-principles study. Phys. Status Solidi C 4, 259 (2007)CrossRefGoogle Scholar
  19. 19.
    S.K. Hong, T. Hanada, H.J. Ko, Y. Chen, T. Yao, D. Imai, K. Araki, M. Shinohara, K. Saitoh, M. Terauchi, Control of crystal polarity in a wurtzite crystal: ZnO films grown by plasma-assisted molecular-beam epitaxy on GaN. Phys. Rev. B 65, 115331 (2002)CrossRefGoogle Scholar
  20. 20.
    M. Adachi, M. Takasugi, M. Sugiyama, J. Iida, A. Tanaka, H. Fukuyama, Polarity inversion and growth mechanism of AlN layer grown on nitride sapphire substrate using Ga–Al liquid-phase epitaxy. Phys. Status Solidi B 252, 743 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Nanishi, Y. Saito, T. Yamauchi, RF-molecular beam epitaxy growth and properties of InN and related alloys. Jpn. J. Appl. Phys. 42, 2549 (2003)CrossRefGoogle Scholar
  22. 22.
    J. Wu, W. Walukiewicz, Band gaps of InN and group III nitride alloys. Superlattices Microstruct. 34, 63 (2003)CrossRefGoogle Scholar
  23. 23.
    I. Mahboob, T.D. Veal, C.F. McConville, H. Lu, W.J. Schaff, Intrinsic electron accumulation at clean InN surfaces. Phys. Rev. Lett. 92, 036804 (2004)CrossRefGoogle Scholar
  24. 24.
    X. Wang, S.B. Che, Y. Ishitani, A. Yoshikawa, Threading dislocations in In-polar InN films and their effects on surface morphology and electrical properties. Appl. Phys. Lett. 90, 151901 (2007)CrossRefGoogle Scholar
  25. 25.
    R. Kobayashi, T. Nakayama, Atomic and electronic structures of stair-rod dislocations in Si and GaAs. Jpn. J. Appl. Phys. 47, 4417 (2008)CrossRefGoogle Scholar
  26. 26.
    Y. Takei, T. Nakayama, Electron carrier generation at edge dislocations in InN films; first-principles study. J. Cryst. Growth 311, 2767 (2009)CrossRefGoogle Scholar
  27. 27.
    A. Béré, A. Serra, Atomic structure of dislocation cores in GaN. Phys. Rev. B 65, 205323 (2002)CrossRefGoogle Scholar
  28. 28.
    H.P. Lei, P. Ruterana, G. Nouet, X.Y. Jiang, J. Chen, Core structures of the aa-edge dislocation in InN. Appl. Phys. Lett. 90, 111901 (2007)CrossRefGoogle Scholar
  29. 29.
    D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990)CrossRefGoogle Scholar
  30. 30.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  31. 31.
    Y. Ishitani, W. Terashima, S.B. Che, A. Yoshikawa, Conduction and valence band edge properties of hexagonal InN characterized by optical measurements. Phys. Status Solidi C 3, 1850 (2006)CrossRefGoogle Scholar
  32. 32.
    M. Murayama, T. Nakayama, Ab initio calculations of two-photon absorption spectra in semiconductors. Phys. Rev. B 52, 4986 (1995)CrossRefGoogle Scholar
  33. 33.
    A. Yoshikawa, X. Wang, Y. Ishitani, A. Uedono, Recent advances and challenges for successful p-type control of InN films with Mg acceptor doping by molecular beam epitaxy. Phys. Status Solidi A 207, 1011 (2010)CrossRefGoogle Scholar
  34. 34.
    Y. Takei, “Electronic structures of surfaces, interfaces, and defects of InN nitride semiconductor” (in Japanese), PhD Thesis, Chiba University (2009)Google Scholar
  35. 35.
    A. Faghaninia, J.W. Ager III, C.S. Lo, Ab initio electronic transport model with explicit solution to the linearized Boltzmann transport equation. Phys. Rev. B 91, 235123 (2015)CrossRefGoogle Scholar
  36. 36.
    N. Miller, E.E. Haller, G. Koblmüller, C. Gallinat, J.S. Speck, W.J. Schaff, M.E. Hawkridge, K.M. Yu, J.W. Ager III, Effect of charged dislocation scattering on electrical and electrothermal transport in n-type InN. Phys. Rev. B 84, 075315 (2011)CrossRefGoogle Scholar
  37. 37.
    E. Baghani, S.K. O’Leary, Electron mobility limited by scattering from screened positively charged dislocation lines within indium nitride. Appl. Phys. Lett. 99, 262106 (2011)CrossRefGoogle Scholar
  38. 38.
    N. Miller, J.W. Ager III, H.M. Smith III, M.A. Mayer, K.M. Yu, E.E. Haller, W. Walukiewicz, W.J. Schaff, C. Gallinat, G. Koblmüller, J.S. Speck, Hole transport and photoluminescence in Mg-doped InN. J. Appl. Phys. 107, 113712 (2010)CrossRefGoogle Scholar
  39. 39.
    C.G. Van de Walle, J. Neugebauer, Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423, 626 (2003)CrossRefGoogle Scholar
  40. 40.
    J. Tersoff, Schottky barrier heights and the continuum of gap states. Phys. Rev. Lett. 52, 465 (1984)CrossRefGoogle Scholar
  41. 41.
    Y. Takei, T. Nakayama, First-principles study of Schottky-Barrier behavior at metal/InN interfaces. Jpn. J. Appl. Phys. 48, 081001 (2009)CrossRefGoogle Scholar
  42. 42.
    T. Nakayama, S. Itaya, D. Murayama, Nano-scale view of atom intermixing at metal/semiconductor interfaces. J. Phys: Conf. Ser. 38, 216 (2006)Google Scholar
  43. 43.
    T. Nakayama, K. Shiraishi, S. Miyazaki, Y. Akasaka, K. Torii, P. Ahmet, K. Ohmori, N. Umezawa, H. Watanabe, T. Chikyow, Y. Nara, A. Ohta, H. Iwai, K. Yamada, T. Nakaoka, Physics of Metal/High-k Interfaces. ECS Trans. 3, 129 (2006). and references thereinCrossRefGoogle Scholar
  44. 44.
    T. Nakayama, Valence band offset and electronic structures of zinc-compound strained superlattices. J. Phys. Soc. Jpn. 61, 2434 (1992)CrossRefGoogle Scholar
  45. 45.
    D. Muto, H. Naoi, T. Araki, S. Kitagawa, M. Kurouchi, H. Na, Y. Nanishi, High-quality InN grown on KOH wet etched N-polar InN template by RF-MBE. Phys. Status Solidi A 203, 1691 (2006)CrossRefGoogle Scholar
  46. 46.
    Y. Ishitani, W. Terashima, S.B. Che, A. Yoshikawa, Conduction and valence band edge properties of hexagonal InN characterized by optical measurements. Phys. Status Solidi C 3, 1850 (2006)CrossRefGoogle Scholar
  47. 47.
    S. Sakurai, T. Nakayama, Electronic structures and etching processes of Chlorinated Si(111) Surfaces. Jpn. J. Appl. Phys. 41, 2171 (2002)CrossRefGoogle Scholar
  48. 48.
    S. Picozzi, A. Continenza, G. Satta, S. Massidda, A.J. Freeman, Metal-induced gap states and Schottky barrier heights at nonreactive GaN/noble-metal interfaces. Phys. Rev. B 61, 16736 (2000)CrossRefGoogle Scholar
  49. 49.
    J.W. Ager III, N.R. Miller, Taming transport in InN. Phys. Status Solidi A 209, 83 (2012)CrossRefGoogle Scholar
  50. 50.
    N. Spyropoulos-Antonakakis, E. Sarantopoulou, Z. Kollia, G. Dražic, S. Kobe, Schottky and charge memory effects in InN nanodomains. Appl. Phys. Lett. 99, 153110 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsChiba UniversityChibaJapan

Personalised recommendations