Advertisement

Abstract

Twelve ferrets (Mustela putorius) (four males and eight females) were used for this study. The animals’ age ranged between 3 months and 2 years, and their weight was between 800 and 2060 g. Ten brains were processed for cyto- and myeloarchitectonic characteristics. MRI scans were taken in vivo for two animals, including the one whose brain was used for the brain atlas. This animal was a female 2 years and 3 months old, weighing 800 g. MRI scans of paraformaldehyde-fixed ferret heads and brains were recorded in two other 2-year-old female ferrets. Computer-aided X-ray tomography was performed on isolated skulls from two additional animals.

References

  1. Adrianov OS, Mering TA (1964) Atlas of the canine brain. Edwards Brothers, Ann Arbor, MIGoogle Scholar
  2. Agnarsson I, Kuntner M, May-Collado LJ (2010) Dogs, cats, and kin: a molecular species-level phylogeny of Carnivora. Mol Phylogenet Evol 54:726–745.  https://doi.org/10.1016/j.ympev.2009.10.033 CrossRefGoogle Scholar
  3. Angelucci A, Clascá F, Sur M (1998) Brainstem inputs to the ferret medial geniculate nucleus and the effect of early deafferentation on novel retinal projections to the auditory thalamus. J Comp Neurol 400:417–439.  https://doi.org/10.1002/(SICI)1096-9861(19981026)400:3<417::AID-CNE10>3.0.CO;2-O CrossRefGoogle Scholar
  4. Atiani S, David SV, Elgueda D et al (2014) Emergent selectivity for task-relevant stimuli in higher-order auditory cortex. Neuron 82:486–499.  https://doi.org/10.1016/j.neuron.2014.02.029 CrossRefPubMedCentralPubMedGoogle Scholar
  5. Bajo VM, Leach ND, Cordery PM et al (2014) The cholinergic basal forebrain in the ferret and its inputs to the auditory cortex. Eur J Neurosci 40:2922–2940.  https://doi.org/10.1111/ejn.12653 CrossRefPubMedCentralPubMedGoogle Scholar
  6. Bajo VM, Nodal FR, Bizley JK et al (2007) The ferret auditory cortex: Descending projections to the inferior colliculus. Cereb Cortex 17:475–491.  https://doi.org/10.1093/cercor/bhj164 CrossRefGoogle Scholar
  7. Bajo VM, Nodal FR, Bizley JK, King AJ (2010) The non-lemniscal auditory cortex in ferrets: convergence of corticotectal inputs in the superior colliculus. Front Neuroanat 4:1–15.  https://doi.org/10.3389/fnana.2010.00018 CrossRefGoogle Scholar
  8. Baldauf ZB, Chomsung RD, Garden WB et al (2005) Ultrastructural analysis of projections to the pulvinar nucleus of the cat. I: Middle suprasylvian gyrus (areas 5 and 7). J Comp Neurol 485:87–107.  https://doi.org/10.1002/cne.20480 CrossRefPubMedCentralPubMedGoogle Scholar
  9. Berman AL (1968) The brain stem of the cat: a cytoarchitectonic atlas with stereotaxic coordinates. University of Wisconsin Press, Madison, WIGoogle Scholar
  10. Berman AL, Jones EG (1982) The thalamus and basal telencephalon of the cat: a cytoarchitectonic atlas with stereotaxic coordinates. University of Wisconsin Press, Madison, WIGoogle Scholar
  11. Berson DM, Graybiel AM (1978) Parallel thalamic zones in the LP-pulvinar complex of the cat identified by their afferent and efferent connections. Brain Res 147:139–148.  https://doi.org/10.1016/0006-8993(78)90778-3 CrossRefGoogle Scholar
  12. Billig I, Foris JM, Card JP, Yates BJ (1999) Transneuronal tracing of neural pathways controlling an abdominal muscle, rectus abdominis, in the ferret. Brain Res 820:31–44.  https://doi.org/10.1016/S0006-8993(98)01320-1 CrossRefGoogle Scholar
  13. Billig I, Foris JM, Enquist LW et al (2000) Definition of neuronal circuitry controlling the activity of phrenic and abdominal motoneurons in the ferret using recombinant strains of pseudorabies virus. J Neurosci 20:7446–7454CrossRefGoogle Scholar
  14. Bizley JK, Bajo VM, Nodal FR, King AJ (2015) Cortico-cortical connectivity within ferret auditory cortex. J Comp Neurol 523:2187–2210.  https://doi.org/10.1002/cne.23784 CrossRefPubMedCentralPubMedGoogle Scholar
  15. Bizley JK, Nodal FR, Nelken I, King AJ (2005) Functional organization of ferret auditory cortex. Cereb Cortex 15:1637–1653.  https://doi.org/10.1093/cercor/bhi042 CrossRefGoogle Scholar
  16. Boissonade FM, Sharkey KA, Lucier GE (1993) Trigeminal nuclear complex of the ferret: anatomical and immunohistochemical studies. J Comp Neurol 329:291–312.  https://doi.org/10.1002/cne.903290302 CrossRefGoogle Scholar
  17. Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde, 2nd edn. Verlag von Johann Ambrosius Barth, LeipzigGoogle Scholar
  18. Burton H, Mitchell G, Brent D (1982) Second somatic sensory area in the cerebral cortex of cats: somatotopic organization and cytoarchitecture. J Comp Neurol 210:109–135.  https://doi.org/10.1002/cne.902100203 CrossRefGoogle Scholar
  19. Burwell RD (2001) Borders and cytoarchitecture of the perirhinal and postrhinal cortices in the rat. J Comp Neurol 437:17–41.  https://doi.org/10.1002/cne.1267 CrossRefGoogle Scholar
  20. Cantone G, Xiao J, McFarlane N, Levitt JB (2005) Feedback connections to ferret striate cortex: Direct evidence for visuotopic convergence of feedback inputs. J Comp Neurol 487:312–331.  https://doi.org/10.1002/cne.20570 CrossRefGoogle Scholar
  21. Carrive P, Paxinos G (1994) The supraoculomotor cap: a region revealed by NADPH diaphorase histochemistry. Neuroreport 5:2257–2260.  https://doi.org/10.1097/00001756-199411000-00013 CrossRefGoogle Scholar
  22. Clascá F, Llamas A, Reinoso-Suárez F (1997) Insular cortex and neighboring fields in the cat: A redefinition based on cortical microarchitecture and connections with the thalamus. J Comp Neurol 384:456–482.  https://doi.org/10.1002/(SICI)1096-9861(19970804)384:3<456::AID-CNE10>3.0.CO;2-H CrossRefGoogle Scholar
  23. Clascá F, Llamas A, Reinoso-Suárez F (2000) Cortical connections of the insular and adjacent parieto-temporal fields in the cat. Cereb Cortex 10:371–399.  https://doi.org/10.1093/cercor/10.4.371 CrossRefGoogle Scholar
  24. Craig AD Jr, Wiegand SJ, Price JL (1982) The thalamo-cortical projection of the nucleus submedius in the cat. J Comp Neurol 206:28–48.  https://doi.org/10.1002/cne.902060105 CrossRefGoogle Scholar
  25. Danckers J (2003) Cytoarchitektonische Arealisierungen des Neocortex beim Mink (Mustela vison) und vergleichend-quantitative Untersuchungen zwischen der Wild- und Haustierform. Christian-Albrechts-Universität, KielGoogle Scholar
  26. Dennis BJ, Kerr DI (1975) Olfactory bulb connections with basal rhinencephalon in the ferret: an evoked potential and neuroanatomical study. J Comp Neurol 159:129–148.  https://doi.org/10.1002/cne.901590108 CrossRefGoogle Scholar
  27. Distler C, Korbmacher H, Hoffmann K-P (2009) Retinal projections to the accessory optic system in pigmented and albino ferrets (Mustela putorius furo). Exp Brain Res 199:333–343.  https://doi.org/10.1007/s00221-008-1690-4 CrossRefGoogle Scholar
  28. Doubell TP, Baron J, Skaliora I, King AJ (2000) Topographical projection from the superior colliculus to the nucleus of the brachium of the inferior colliculus in the ferret: Convergence of visual and auditory information. Eur J Neurosci 12:4290–4308.  https://doi.org/10.1046/j.1460-9568.2000.01337.x CrossRefGoogle Scholar
  29. Duque A, McCormick DA (2010) Circuit-based localization of ferret prefrontal cortex. Cereb Cortex 20:1020–1036.  https://doi.org/10.1093/cercor/bhp164 CrossRefGoogle Scholar
  30. Foxworthy WA, Clemo HR, Meredith MA (2013) Laminar and connectional organization of a multisensory cortex. J Comp Neurol 521:1867–1890.  https://doi.org/10.1002/cne.23264 CrossRefPubMedCentralPubMedGoogle Scholar
  31. Foxworthy WA, Meredith MA (2011) An examination of somatosensory area SIII in ferret cortex. Somatosens Mot Res 28:1–10.  https://doi.org/10.3109/08990220.2010.548465 CrossRefPubMedCentralPubMedGoogle Scholar
  32. Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Academic Press, LondonGoogle Scholar
  33. Fritz JB, David SV, Radtke-Schuller S et al (2010) Adaptive, behaviorally gated, persistent encoding of task-relevant auditory information in ferret frontal cortex. Nat Neurosci 13:1011–1019.  https://doi.org/10.1038/nn.2598 CrossRefPubMedCentralPubMedGoogle Scholar
  34. Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1:203–209.  https://doi.org/10.1080/01616412.1979.11739553 CrossRefGoogle Scholar
  35. Glickstein M, Sultan F, Voogd J (2011) Functional localization in the cerebellum. Cortex 47:59–80.  https://doi.org/10.1016/j.cortex.2009.09.001 CrossRefGoogle Scholar
  36. Graybiel AM, Berson DM (1980) Histochemical identification and afferent connections of subdivisions in the lateralis posterior-pulvinar complex and related thalamic nuclei in the cat. Neuroscience 5:1175–1238.  https://doi.org/10.1016/0306-4522(80)90196-7 CrossRefGoogle Scholar
  37. Groenewegen HJ, Room P, Witter MP, Lohman AHM (1982) Cortical afferents of the nucleus accumbens in the cat, studied with anterograde and retrograde transport techniques. Neuroscience 7:977–996.  https://doi.org/10.1016/0306-4522(82)90055-0 CrossRefGoogle Scholar
  38. Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441:197–222.  https://doi.org/10.1002/cne.1407 CrossRefGoogle Scholar
  39. Hassler R, Muhs-Clement K (1964) Architektonischer Aufbau des sensomotorischen und parietalen Cortex der Katze. J Hirnforsch 6:377–420Google Scholar
  40. Hawthorn J (1985) A guide to the ferret brainstem. http://didier.theearlab.org/FerretBrainstemAtlas.html.
  41. Henderson Z (1987a) Cholinergic innervation of ferret visual system. Neuroscience 20:503–518.  https://doi.org/10.1016/0306-4522(87)90107-2 CrossRefGoogle Scholar
  42. Henderson Z (1987b) Source of cholinergic input to ferret visual cortex. Brain Res 412:261–268.  https://doi.org/10.1016/0006-8993(87)91132-2 CrossRefGoogle Scholar
  43. Henderson Z (1987c) Overlap in the distribution of cholinergic and catecholaminergic neurons in the upper brainstem of the ferret. J Comp Neurol 265:581–592.  https://doi.org/10.1002/cne.902650409 CrossRefGoogle Scholar
  44. Henderson Z, Sherriff FE (1991) Distribution of choline acetyltransferase immunoreactive axons and terminals in the rat and ferret brainstem. J Comp Neurol 314:147–163.  https://doi.org/10.1002/cne.903140114 CrossRefGoogle Scholar
  45. Henkel CK, Brunso-Bechtold JK (1998) Calcium-binding proteins and GABA reveal spatial segregation of cell types within the developing lateral superior olivary nucleus of the ferret. Microsc Res Tech 41:234–245.  https://doi.org/10.1002/(SICI)1097-0029(19980501)41:3<234::AID-JEMT7>3.0.CO;2-T CrossRefGoogle Scholar
  46. Henkel CK, Fuentes-Santamaria V, Alvarado JC, Brunso-Bechtold JK (2003) Quantitative measurement of afferent layers in the ferret inferior colliculus: DNLL projections to sublayers. Hear Res 177:32–42.  https://doi.org/10.1016/S0378-5955(02)00794-3 CrossRefGoogle Scholar
  47. Herbert J (1963) Nuclear structure of the thalamus of the ferret. J Comp Neurol 120:105–127.  https://doi.org/10.1002/cne.901200109 CrossRefGoogle Scholar
  48. Homman-Ludiye J, Manger PR, Bourne JA (2010) Immunohistochemical parcellation of the ferret (Mustela putorius) visual cortex reveals substantial homology with the cat (Felis catus). J Comp Neurol 518:4439–4462.  https://doi.org/10.1002/cne.22465 CrossRefGoogle Scholar
  49. Horn AKE, Schulze C, Radtke-Schuller S (2009) The Edinger-Westphal nucleus represents different functional cell groups in different species. Ann NY Acad Sci 1164:45–50.  https://doi.org/10.1111/j.1749-6632.2009.03856.x CrossRefGoogle Scholar
  50. Hupfeld D, Distler C, Hoffmann K-P (2007) Deficits of visual motion perception and optokinetic nystagmus after posterior suprasylvian lesions in the ferret (Mustela putorius furo). Exp Brain Res 182:509–523.  https://doi.org/10.1007/s00221-007-1009-x CrossRefGoogle Scholar
  51. Innocenti GM, Manger PR, Masiello I et al (2002) Architecture and callosal connections of visual areas 17, 18, 19 and 21 in the ferret (Mustela putorius). Cereb Cortex 12:411–422CrossRefGoogle Scholar
  52. Ino T, Kaneko T, Mizuno N (2001) Projections from the hippocampal and parahippocampal regions to the entorhinal cortex. An anterograde and retrograde tract-tracing study in the cat. Neurosci Res 39:51–69.  https://doi.org/10.1016/S0168-0102(00)00199-1 CrossRefGoogle Scholar
  53. Jacqmot O, Van Thielen B, Michotte A et al (2017) Comparison of several white matter tracts in feline and canine brain by using magnetic resonance diffusion tensor imaging. Anat Rec (Hoboken) 300:1270–1289.  https://doi.org/10.1002/ar.23579 CrossRefGoogle Scholar
  54. Jarosiewicz B, Schummers J, Malik WQ et al (2012) Functional biases in visual cortex neurons with identified projections to higher cortical targets. Curr Biol 22:269–277.  https://doi.org/10.1016/j.cub.2012.01.011 CrossRefPubMedCentralPubMedGoogle Scholar
  55. Jian BJ, Acernese AW, Lorenzo J et al (2005) Afferent pathways to the region of the vestibular nuclei that participates in cardiovascular and respiratory control. Brain Res 1044:241–250.  https://doi.org/10.1016/j.brainres.2005.03.010 CrossRefGoogle Scholar
  56. Jimenez-Castellanos J (1949) Thalamus of the cat in Horsley-Clarke coordinates. J Comp Neurol 91:307–330.  https://doi.org/10.1002/cne.900910208 CrossRefGoogle Scholar
  57. Jones EG (1985) The thalamus, 1st edn. Springer US, New York, NYCrossRefGoogle Scholar
  58. Kaas JH, Lyon DC (2007) Pulvinar contributions to the dorsal and ventral streams of visual processing in primates. Brain Res Rev 55:285–296.  https://doi.org/10.1016/j.brainresrev.2007.02.008 CrossRefPubMedCentralPubMedGoogle Scholar
  59. Kaas JH, Stepniewska I (2016) Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates. J Comp Neurol 524:595–608.  https://doi.org/10.1002/cne.23838 CrossRefGoogle Scholar
  60. Kageyama GH, Wong-Riley MT (1984) The histochemical localization of cytochrome oxidase in the retina and lateral geniculate nucleus of the ferret, cat, and monkey, with particular reference to retinal mosaics and ON/OFF-center visual channels. J Neurosci 4:2445–2459CrossRefGoogle Scholar
  61. Kalia M, Whitteridge D (1973) The visual areas in the splenial sulcus of the cat. J Physiol 232:275–283.  https://doi.org/10.1113/jphysiol.1973.sp010269 CrossRefPubMedCentralPubMedGoogle Scholar
  62. Kelliher KR, Baum MJ, Meredith M (2001) The ferret’s vomeronasal organ and accessory olfactory bulb: Effect of hormone manipulation in adult males and females. Anat Rec 263:280–288.  https://doi.org/10.1002/ar.1097 CrossRefGoogle Scholar
  63. Keniston LP, Allman BL, Meredith MA, Clemo HR (2009) Somatosensory and multisensory properties of the medial bank of the ferret rostral suprasylvian sulcus. Exp Brain Res 196:239–251.  https://doi.org/10.1007/s00221-009-1843-0 CrossRefPubMedCentralPubMedGoogle Scholar
  64. Kosmal A, Malinowska M, Woźnicka A (1997) Diversity of connections of the temporal neocortex with amygdaloid nuclei in the dog (Canis familiaris). Acta Neurobiol Exp (Wars) 57:289–314Google Scholar
  65. Kosmal A, Malinowska M, Woźnicka A, Rauschecker JP (2004) Cytoarchitecture and thalamic afferents of the sylvian and composite posterior gyri of the canine temporal cortex. Brain Res 1023:279–301.  https://doi.org/10.1016/j.brainres.2004.07.048 CrossRefGoogle Scholar
  66. Kreiner J (1961) The myeloarchitectonics of the frontal cortex of the dog. J Comp Neurol 116:117–133.  https://doi.org/10.1002/cne.901160203 CrossRefGoogle Scholar
  67. Kreiner J (1964) Myeloarchitectonics of the perisylvian cortex in dog. J Comp Neurol 123:231–241.  https://doi.org/10.1002/cne.901230207 CrossRefGoogle Scholar
  68. Kreiner J (1970) Homologies of the fissural patterns of the hemispheres of dog and cat. Acta Neurobiol Exp (Wars) 30:295–305Google Scholar
  69. Krettek JE, Price JL (1977) Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J Comp Neurol 172:687–722.  https://doi.org/10.1002/cne.901720408 CrossRefGoogle Scholar
  70. Kroenke CD, Mills BD, Olavarria JF, Neil JJ (2014) Neuroanatomy of the ferret brain with focus on the cerebral cortex. In: Fox JG, Marini RP (eds) Biology and diseases of the ferret, 3rd edn. John Wiley & Sons, Ames, pp 69–80CrossRefGoogle Scholar
  71. Lanciego JL, Vázquez A (2012) The basal ganglia and thalamus of the long-tailed macaque in stereotaxic coordinates. A template atlas based on coronal, sagittal and horizontal brain sections. Brain Struct Funct 217:613–666.  https://doi.org/10.1007/s00429-011-0370-5 CrossRefGoogle Scholar
  72. Larsell O (1953) The cerebellum of the cat and the monkey. J Comp Neurol 99:135–199.  https://doi.org/10.1002/cne.900990110 CrossRefGoogle Scholar
  73. Law MI, Zahs KR, Stryker MP (1988) Organization of primary visual cortex (area 17) in the ferret. J Comp Neurol 278:157–180.  https://doi.org/10.1002/cne.902780202 CrossRefGoogle Scholar
  74. Lawes IN, Andrews PL (1987) Variation of the ferret skull (Mustela putorius furo L.) in relation to stereotaxic landmarks. J Anat 154:157–171PubMedCentralPubMedGoogle Scholar
  75. Leclerc SS, Rice FL, Dykes RW et al (1993) Electrophysiological examination of the representation of the face in the suprasylvian gyrus of the ferret: a correlative study with cytoarchitecture. Somatosens Mot Res 10:133–159.  https://doi.org/10.3109/08990229309028829 CrossRefGoogle Scholar
  76. Manger PR, Engler G, Moll CKE, Engel AK (2005) The anterior ectosylvian visual area of the ferret: a homologue for an enigmatic visual cortical area of the cat? Eur J Neurosci 22:706–714.  https://doi.org/10.1111/j.1460-9568.2005.04246.x CrossRefGoogle Scholar
  77. Manger PR, Masiello I, Innocenti GM (2002) Areal organization of the posterior parietal cortex of the ferret (Mustela putorius). Cereb Cortex 12:1280–1297.  https://doi.org/10.1093/cercor/12.12.1280 CrossRefGoogle Scholar
  78. Manger PR, Nakamura H, Valentiniene S, Innocenti GM (2004) Visual areas in the lateral temporal cortex of the ferret (Mustela putorius). Cereb Cortex 14:676–689.  https://doi.org/10.1093/cercor/bhh028 CrossRefGoogle Scholar
  79. Markowitsch HJ, Pritzel M, Divac I (1978) The prefrontral cortex of the cat: anatomical subdivisions based on retrograde labeling of cells in the mediodorsal thalamic nucleus. Exp Brain Res 32:335–344.  https://doi.org/10.1007/BF00238706 CrossRefGoogle Scholar
  80. McLaughlin DF, Sonty RV, Juliano SL (1998) Organization of the forepaw representation in ferret somatosensory cortex. Somatosens Mot Res 15:253–268.  https://doi.org/10.1152/jn.01053.2002 CrossRefGoogle Scholar
  81. Meredith MA, Miller LK, Ramoa AS et al (2001) Organization of the neurons of origin of the descending pathways from the ferret superior colliculus. Neurosci Res 40:301–313.  https://doi.org/10.1016/S0168-0102(01)00240-1 CrossRefGoogle Scholar
  82. Montie EW, Pussini N, Schneider GE et al (2009) Neuroanatomy and volumes of brain structures of a live California sea lion (Zalophus californianus) from magnetic resonance images. Anat Rec 292:1523–1547.  https://doi.org/10.1002/ar.20937 CrossRefGoogle Scholar
  83. Morest DK, Oliver DL (1984) The neuronal architecture of the inferior colliculus in the cat: defining the functional anatomy of the auditory midbrain. J Comp Neurol 222:209–236.  https://doi.org/10.1002/cne.902220206 CrossRefGoogle Scholar
  84. Musil SY, Olson CR (1988a) Organization of cortical and subcortical projections to medial prefrontal cortex in the cat. J Comp Neurol 272:219–241.  https://doi.org/10.1002/cne.902720206 CrossRefGoogle Scholar
  85. Musil SY, Olson CR (1988b) Organization of cortical and subcortical projections to anterior cingulate cortex in the cat. J Comp Neurol 272:203–218.  https://doi.org/10.1002/cne.902720205 CrossRefGoogle Scholar
  86. Nigel I, Lawes C, Andrews PLR (1998) Neuroanatomy of the ferret brain. In: Fox JG (ed) Biology and diseases of the ferret, 2nd edn. John Wiley and Sons, Oxford, pp 71–102Google Scholar
  87. Nodal FR, Doubell TP, Jiang ZD et al (2005) Development of the projection from the nucleus of the brachium of the inferior colliculus to the superior colliculus in the ferret. J Comp Neurol 485:202–217.  https://doi.org/10.1002/cne.20478 CrossRefGoogle Scholar
  88. Olson CR, Musil SY (1992) Topographic organization of cortical and subcortical projections to posterior cingulate cortex in the cat: evidence for somatic, ocular, and complex subregions. J Comp Neurol 324:237–260.  https://doi.org/10.1002/cne.903240207 CrossRefGoogle Scholar
  89. Öngür D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219.  https://doi.org/10.1093/cercor/10.3.206 CrossRefGoogle Scholar
  90. Pallas SL, Roe AW, Sur M (1990) Visual projections induced into the auditory pathway of ferrets. I. Novel inputs to primary auditory cortex (AI) from the LP/pulvinar complex and the topography of the MGN-AI projection. J Comp Neurol 298:50–68.  https://doi.org/10.1002/cne.902980105 CrossRefGoogle Scholar
  91. Patzke N, Innocenti GM, Manger PR (2014) The claustrum of the ferret: afferent and efferent connections to lower and higher order visual cortical areas. Front Syst Neurosci 8:31.  https://doi.org/10.3389/fnsys.2014.00031 CrossRefPubMedCentralPubMedGoogle Scholar
  92. Paxinos G, Huang X-F, Petrides M, Toga AW (2008) The rhesus monkey brain, 2nd edn. Elsevier Ltd., OxfordGoogle Scholar
  93. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, San Diego, CAGoogle Scholar
  94. Paxinos G, Watson C, Carrive P et al (2009) Chemoarchitectonic atlas of the rat brain, 2nd edn. Academic Press, LondonGoogle Scholar
  95. Philipp R, Distler C, Hoffmann K-P (2006) A motion-sensitive area in ferret extrastriate visual cortex: An analysis in pigmented and albino animals. Cereb Cortex 16:779–790.  https://doi.org/10.1093/cercor/bhj022 CrossRefGoogle Scholar
  96. Provini L, Marcotti W, Morara S, Rosina A (1998) Somatotopic nucleocortical projections to the multiple somatosensory cerebellar maps. Neuroscience 83:1085–1104.  https://doi.org/10.1016/S0306-4522(97)00477-6 CrossRefGoogle Scholar
  97. Radtke-Schuller S, Schuller G, Angenstein F et al (2016) Brain atlas of the Mongolian gerbil (Meriones unguiculatus) in CT/MRI-aided stereotaxic coordinates. Brain Struct Funct 221(Suppl 1):1–272.  https://doi.org/10.1007/s00429-016-1259-0 CrossRefPubMedCentralPubMedGoogle Scholar
  98. Ramsay AM, Meredith MA (2004) Multiple sensory afferents to ferret pseudosylvian sulcal cortex. Neuroreport 15:461–465.  https://doi.org/10.1097/01.wnr.0000111326.38420.5b CrossRefGoogle Scholar
  99. Ray JP, Price JL (1993) The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 337:1–31.  https://doi.org/10.1002/cne.903370102 CrossRefGoogle Scholar
  100. Reep R (1984) Relationship between prefrontal and limbic cortex: a comparative anatomical review. Brain Behav Evol 25:45–64.  https://doi.org/10.1159/000118851 CrossRefGoogle Scholar
  101. Reinoso-Suárez F (1961) Topographischer Hirnatlas der Katze für experimental-physiologische Untersuchungen. Merck AG, DarmstadtGoogle Scholar
  102. Restrepo CE, Manger PR, Innocenti GM (2002) Retinofugal projections following early lesions of the visual cortex in the ferret. Eur J Neurosci 16:1713–1719.  https://doi.org/10.1046/j.1460-9568.2002.02246.x CrossRefGoogle Scholar
  103. Rice FL, Gomez CM, Leclerc SS et al (1993) Cytoarchitecture of the ferret suprasylvian gyrus correlated with areas containing multiunit responses elicited by stimulation of the face. Somatosens Mot Res 10:161–188.  https://doi.org/10.3109/08990229309028830 CrossRefGoogle Scholar
  104. Robarts DW, Baum MJ (2007) Ventromedial hypothalamic nucleus lesions disrupt olfactory mate recognition and receptivity in female ferrets. Horm Behav 51:104–113.  https://doi.org/10.1016/j.yhbeh.2006.08.009 CrossRefGoogle Scholar
  105. Rockland KS (1985) Anatomical organization of primary visual cortex (area 17) in the ferret. J Comp Neurol 241:225–236.  https://doi.org/10.1002/cne.902410209 CrossRefGoogle Scholar
  106. Room P, Groenewegen HJ (1986a) Connections of the parahippocampal cortex. I. Cortical afferents. J Comp Neurol 251:415–450.  https://doi.org/10.1002/cne.902510402 CrossRefGoogle Scholar
  107. Room P, Groenewegen HJ (1986b) Connections of the parahippocampal cortex in the cat. II. Subcortical afferents. J Comp Neurol 251:451–473.  https://doi.org/10.1002/cne.902510403 CrossRefGoogle Scholar
  108. Sawyer EK, Turner EC, Kaas JH (2016) Somatosensory brainstem, thalamus, and cortex of the California sea lion (Zalophus californianus). J Comp Neurol 524:1957–1975.  https://doi.org/10.1002/cne.23984 CrossRefPubMedCentralPubMedGoogle Scholar
  109. Schuller G, Radtke-Schuller S, Betz M (1986) A stereotaxic method for small animals using experimentally determined reference profiles. J Neurosci Methods 18:339–350.  https://doi.org/10.1016/0165-0270(86)90022-1 CrossRefGoogle Scholar
  110. Sellers KK, Yu C, Zhou ZC et al (2016) Oscillatory dynamics in the frontoparietal attention network during sustained attention in the ferret. Cell Rep 16:2864–2874.  https://doi.org/10.1016/j.celrep.2016.08.055 CrossRefPubMedCentralPubMedGoogle Scholar
  111. Shintani T, Mori RL, Yates BJ (2003) Locations of neurons with respiratory-related activity in the ferret brainstem. Brain Res 974:236–242.  https://doi.org/10.1016/S0006-8993(03)02592-7 CrossRefGoogle Scholar
  112. Snider RS, Niemer WT (1964) A stereotaxic atlas of the cat brain. University of Chicago Press, Chicago, ILGoogle Scholar
  113. Stanton GB, Tanaka D, Sakai ST, Weeks OI (1986) Thalamic afferents to cytoarchitectonic subdivisions of area 6 on the anterior sigmoid gyrus of the dog: a retrograde and anterograde tracing study. J Comp Neurol 252:446–467.  https://doi.org/10.1002/cne.902520403 CrossRefGoogle Scholar
  114. Stolzberg D, Wong C, Butler BE, Lomber SG (2017) Catlas: an magnetic resonance imaging-based three-dimensional cortical atlas and tissue probability maps for the domestic cat (Felis catus). J Comp Neurol 525:3190–3206.  https://doi.org/10.1002/cne.24271 CrossRefGoogle Scholar
  115. Stryker P, Zahs R (1983) On and off sublaminae in the lateral geniculate nucleus of the ferret. J Neurosci 3:1943–1951CrossRefGoogle Scholar
  116. Swanson LW (2015) Brain maps online: toward open access atlases and a pan-mammalian nomenclature. J Comp Neurol 523:2272–2276.  https://doi.org/10.1002/cne.23788 CrossRefGoogle Scholar
  117. Sychowa B (1962) Medial geniculate body of the dog. J Comp Neurol 118:355–371.  https://doi.org/10.1002/cne.901180306 CrossRefGoogle Scholar
  118. Symonds LL, Rosenquist AC (1984) Corticocortical connections among visual areas in the cat. J Comp Neurol 229:1–38.  https://doi.org/10.1002/cne.902290103 CrossRefGoogle Scholar
  119. Tanaka D Jr, Gorska T, Dutkiewicz K (1981) Corticostriate projections from the primary motor cortex in the dog. Brain Res 209:287–303CrossRefGoogle Scholar
  120. Thorpe PA, Herbert J (1976) The accessory optic system of the ferret. J Comp Neurol 170:295–309.  https://doi.org/10.1002/cne.901700303 CrossRefGoogle Scholar
  121. Walberg F, Kotchabhakdi N, Hoddevik GH (1979) The olivocerebellar projections to the flocculus and paraflocculus in the cat, compared to those in the rabbit. A study using horseradish peroxidase as a tracer. Brain Res 161:389–398.  https://doi.org/10.1016/0006-8993(79)90670-X CrossRefGoogle Scholar
  122. Watson C, Paxinos G (2010) Chemoarchitectonic atlas of the mouse brain. Academic Press, LondonGoogle Scholar
  123. Wersinger SR, Baum MJ (1996) The temporal pattern of mating-induced immediate-early gene product immunoreactivity in LHRH and non-LHRH neurons of the estrous ferret forebrain. J Neuroendocrinol 8:345–359.  https://doi.org/10.1046/j.1365-2826.1996.04623.x CrossRefGoogle Scholar
  124. Westwood WJ (1962) Anatomy of the hypothalamus of the ferret. J Comp Neurol 118:323–341.  https://doi.org/10.1002/cne.901180304 CrossRefGoogle Scholar
  125. Winer JA, Diehl JJ, Larue DT (2001) Projections of auditory cortex to the medial geniculate body of the cat. J Comp Neurol 430:27–55.  https://doi.org/10.1002/1096-9861(20010129)430:1<27::AID-CNE1013>3.0.C CrossRefGoogle Scholar
  126. Witter MP, Wouterlood FG, Naber PA, Van Haeften T (2000) Anatomical organization of the parahippocampal-hippocampal network. Ann N Y Acad Sci 911:1–24.  https://doi.org/10.1111/j.1749-6632.2000.tb06716.x CrossRefGoogle Scholar
  127. Woźnicka A, Kosmal A (2003) Cytoarchitecture of the canine perirhinal and postrhinal cortex. Acta Neurobiol Exp (Wars) 63:197–209Google Scholar
  128. Woźnicka A, Malinowska M, Kosmal A (2006) Cytoarchitectonic organization of the entorhinal cortex of the canine brain. Brain Res Rev 52:346–367.  https://doi.org/10.1016/j.brainresrev.2006.04.008 CrossRefGoogle Scholar
  129. Yu C, Sellers KK, Radtke-Schuller S et al (2016) Structural and functional connectivity between the lateral posterior-pulvinar complex and primary visual cortex in the ferret. Eur J Neurosci 43:230–244.  https://doi.org/10.1111/ejn.13116 CrossRefPubMedCentralPubMedGoogle Scholar
  130. Zhang HY, Hoffmann K (1993) Retinal projections to the pretectum, accessory optic system and superior colliculus in pigmented and albino ferrets. Eur J Neurosci 5:486–500.  https://doi.org/10.1111/j.1460-9568.199a3.tb00515.x CrossRefGoogle Scholar
  131. Zhang M, Liu Y, Broman J (2002) Organization of the ferret lateral cervical nucleus and cervicothalamic tract. Somatosens Mot Res 19:36–48.  https://doi.org/10.1080/08990220120113039 CrossRefGoogle Scholar
  132. Zhou ZC, Yu C, Sellers KK, Fröhlich F (2016b) Dorso-lateral frontal cortex of the ferret encodes perceptual difficulty during visual discrimination. Sci Rep 6:23568.  https://doi.org/10.1038/srep23568 CrossRefPubMedCentralPubMedGoogle Scholar
  133. Zilles K (1985) The cortex of the rat. Springer, HeidelbergCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Susanne Radtke-Schuller
    • 1
  1. 1.Department of PsychiatryUniv. of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations