Multifractal Analysis on Cancer Risk

  • Milan Stehlík
  • Philipp Hermann
  • Stefan Giebel
  • Jens-Peter Schenk
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


Here we consider retroperitoneal tumors in childhood as examples from oncology generating difficult multicriterial decision problems. Inter-patient heterogeneity causes multifractal behavior of images for mammary cancer. Here we fit mixture models to box-counting fractal dimensions in order to better understand this variability. In this context the effect of chemotherapy is studied. The approach of Shape Analysis, proposed already in the work of Giebel (Bull Soc Sci Med Grand Duche Luxemb 1:121–130, 2008; Zur Anwendung der Formanalyse. Application of shape analysis. University of Luxembourg, Luxembourg, 2011), is used. This approach has considered a small number of cases and the test according to Ziezold (Biom J 3:491–510, 1994) is distribution free. Our method here is parametric.



Milan Stehlík acknowledges FONDECYT Regular No1151441 and LIT-2016-1-SEE-023 mODEC. This work was also supported by the Slovak Research and Development Agency under the contract No. SK-AT-2015-0019. Philipp Hermann was supported by ANR project DESIRE FWF I 833-N18.


  1. 1.
    Baish, J.W., Jain, R.K.: Fractals and cancer (2000).
  2. 2.
    Benaglia, T., Chauveau, D., Hunter, D.R., Young, D.S.: mixtools: An R package for analyzing finite. J. Stat. Softw. 32(6), 1–29 (2009).
  3. 3.
    Furtwängler, R., Schenk, J.P., Reinhard, H., Leuschner, I., Rübe, C., von Schweinitz, D., Graf, N.: Nephroblastom - Wilms-tumor. Der Onkologe 11(10), 1077–1089 (2005)CrossRefGoogle Scholar
  4. 4.
    Giebel, S.: Statistical analysis of renal tumours with infants. Bull. Soc. Sci. Med. Grand Duche Luxemb. 1, 121–130 (2008)Google Scholar
  5. 5.
    Giebel, S.: Zur Anwendung der Formanalyse (Application of Shape Analysis). University of Luxembourg, Luxembourg (2011)Google Scholar
  6. 6.
    Giebel, S., Schiltz, J., Graf, N., Nourkami, N., Leuschner, I., Schenk, J.P.: Application of shape analysis on 3D images-MRI of renal tumors. J. Iran. Stat. Soc. 11(2), 131–146 (2012)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Günther, P., Schenk, J.P., Wunsch, R., Tröger, J., Waag, K.L.: Abdominal tumours in children: 3-D visualisation and surgical planning. Eur. J. Pediatr. Surg. 14(5), 316–321 (2004). CrossRefGoogle Scholar
  8. 8.
    Hermann, P., Giebel, S.M., Schenk, J.P., Stehlík, M.: Dynamic shape analysis - before and after chemotherapy. In: Guillén, M., Juan, Á.A., Ramalhinho, H., Serra, I., Serrat, C. (eds.) Current Topics on Risk Analysis: ICRA 6 and RISK 2015 Conference, Barcelona, pp. 339–346 (2015)Google Scholar
  9. 9.
    Hermann, P., Mrkvička, T., Mattfeldt, T., Minárová, M., Helisová, K., Nicolis, O., Wartner, F., Stehlík, M.: Fractal and stochastic geometry inference for breast cancer: a case study with random fractal models and Quermass-interaction process. Stat. Med. 34(18), 2636–2661 (2015). MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mattfeldt, T., Meschenmoser, D., Pantle, U., Schmidt, V.: Characterization of mammary gland tissue using joint estimators of Minkowski functionals. Image Anal. Stereol. 26(1), 13–22 (2007). MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mrkvička, T., Mattfeldt, T.: Testing histological images of mammary tissues on compatibility with the boolean model of random sets. Image Anal. Stereol. 30(1), 11–18 (2011). MathSciNetCrossRefGoogle Scholar
  12. 12.
    Nicolis, O., Kiselák, J., Porro, F., Stehlík, M.: Multi-fractal cancer risk assessment. Stoch. Anal. Appl. 35, 237–256 (2017). MathSciNetCrossRefGoogle Scholar
  13. 13.
    R Core Team: R: A Language and Environment for Statistical Computing (2015).
  14. 14.
    Ratto, C., Sofo, L., Ippoliti, M., Merico, M., Doglietto, G.B., Crucitti, F.: Prognostic factors in colorectal cancer. Dis. Colon Rectum 41(8), 1033–1049 (1998)CrossRefGoogle Scholar
  15. 15.
    Schenk, J.P., Waag, K.L., Graf, N., Wunsch, R., Jourdan, C., Behnisch, W., Troger, J., Gunther, P.: 3D-visualization by MRI for surgical planning of Wilms tumors. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 176(10), 1447–1452 (2004). CrossRefGoogle Scholar
  16. 16.
    Schenk, J.P., Graf, N., Günther, P., Ley, S., Göppl, M., Kulozik, A., Rohrschneider, W.K., Tröger, J.: Role of MRI in the management of patients with nephroblastoma. Eur. Radiol. 18(4), 683–691 (2008). CrossRefGoogle Scholar
  17. 17.
    Ward, E., DeSantis, C., Robbins, A., Kohler, B., Jemal, A.: Childhood and adolescent cancer statistics. CA Cancer J. Clin. 64(2), 83–103 (2014). CrossRefGoogle Scholar
  18. 18.
    Wilms, M.: Die Mischgeschwülste der Niere. Verlag von Arthur Georgi, Leipzig (1889)Google Scholar
  19. 19.
    Ziezold, H.: Mean figures and mean shapes applied to biological figure and shape distributions in the plane. Biom. J. 36, 491–510 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Milan Stehlík
    • 1
    • 2
  • Philipp Hermann
    • 3
  • Stefan Giebel
    • 3
  • Jens-Peter Schenk
    • 4
  1. 1.Linz Institute of Technology (LIT) and Department of Applied StatisticsJohannes Kepler UniversityLinzAustria
  2. 2.Institute of StatisticsUniversidad de ValparaísoValparaísoChile
  3. 3.Department of Applied StatisticsJohannes Kepler UniversityLinzAustria
  4. 4.Division of Pediatric RadiologyUniversity Hospital of HeidelbergHeidelbergGermany

Personalised recommendations