Trust and Privacy Challenges in Social Participatory Networks

  • Haleh Amintoosi
  • Mohammad Allahbakhsh
  • Salil S. Kanhere
  • Aleksandar Ignjatovic
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 234)


Trust and privacy in social participatory sensing systems have always been challenging issues. Trust and privacy are somehow interconnected and interdependent concepts, and solutions that take into account both of these two parameters simultaneously will result in better people evaluation in the context of social participatory networks. In this paper, we propose a trust and privacy aware framework for recruiting workers in social participatory networks which controls and adjusts the privacy and trustworthiness of workers accordingly. The proposed method employs the reputation scores gained by a worker to adjust the privacy settings from which the worker can benefit. This interdependency helps requesters find more suitable workers. The simulation results show the promising behavior of the proposed framework.


  1. 1.
    Allahbakhsh, M., Benatallah, B., Ignjatovic, A., Motahari-Nezhad, H.R., Bertino, E., Dustdar, S.: Quality control in crowdsourcing systems: issues and directions. IEEE Internet Comput. 17(2), 76–81 (2013)CrossRefGoogle Scholar
  2. 2.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Stanford InfoLab, Technical report (1999)Google Scholar
  3. 3.
    Amintoosi, H., Kanhere, S.S.: A trust-based recruitment framework for multi-hop social participatory sensing. In: 2013 IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 266–273. IEEE (2013)Google Scholar
  4. 4.
    Amintoosi, H., Kanhere, S.S.: A trust framework for social participatory sensing systems. In: Zheng, K., Li, M., Jiang, H. (eds.) MobiQuitous 2012. LNICST, vol. 120, pp. 237–249. Springer, Heidelberg (2013). Scholar
  5. 5.
    Amintoosi, H., Kanhere, S.S.: A reputation framework for social participatory sensing systems. Mob. Netw. Appl. 19(1), 88–100 (2014)CrossRefGoogle Scholar
  6. 6.
    Wu, X., Ying, X., Liu, K., Chen, L.: A survey of privacy-preservation of graphs and social networks. In: Aggarwal, C., Wang, H. (eds.) Managing and Mining Graph Data. ADBS, vol. 40, pp. 421–453. Springer, Boston (2010). Scholar
  7. 7.
    Harmon, A.: Amazon glitch unmasks war of reviewers. N. Y. Times 14(8) (2004)Google Scholar
  8. 8.
    Levien, R., Aiken, A.: Attack-resistant trust metrics for public key certification. In: USENIX Security (1998)Google Scholar
  9. 9.
    Allahbakhsh, M., Ignjatovic, A., Benatallah, B., Beheshti, S.-M.-R., Foo, N., Bertino, E.: An analytic approach to people evaluation in crowdsourcing systems. arXiv preprint arXiv:1211.3200 (2012)
  10. 10.
    Allahbakhsh, M., Ignjatovic, A., Benatallah, B., Beheshti, S.-M.-R., Foo, N., Bertino, E.: Detecting, representing and querying collusion in online rating systems. arXiv preprint arXiv:1211.0963 (2012)
  11. 11.
    Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service provision. Decis. Support Syst. 43(2), 618–644 (2007)CrossRefGoogle Scholar
  12. 12.
    Amintoosi, H., Kanhere, S.S., Allahbakhsh, M.: Trust-based privacy-aware participant selection in social participatory sensing. J. Inf. Secur. Appl. 20, 11–25 (2015)Google Scholar
  13. 13.
    Dai, C., Rao, F.-Y., Truta, T.M., Bertino, E.: Privacy-preserving assessment of social network data trustworthiness. Int. J. Coop. Inf. Syst. 23(02), 1441004 (2014)CrossRefGoogle Scholar
  14. 14.
    Zhu, Y., Yan, Z.: A survey on trust evaluation in e-commerce. In: Proceedings of the 9th EAI International Conference on Mobile Multimedia Communications, MobiMedia 2016, pp. 130–139. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium (2016)Google Scholar
  15. 15.
    Cho, J.-H., Chan, K., Adali, S.: A survey on trust modeling. ACM Comput. Surv. 48(2), 28:1–28:40 (2015)CrossRefGoogle Scholar
  16. 16.
    Gross, R., Acquisti, A.: Information revelation and privacy in online social networks. In: Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society, pp. 71–80. ACM (2005)Google Scholar
  17. 17.
    Fogel, J., Nehmad, E.: Internet social network communities: risk taking, trust, and privacy concerns. Comput. Hum. Behav. 25(1), 153–160 (2009)CrossRefGoogle Scholar
  18. 18.
    Zheleva, E., Getoor, L.: To join or not to join: the illusion of privacy in social networks with mixed public and private user profiles. In: Proceedings of the 18th International Conference on World Wide Web, pp. 531–540. ACM (2009)Google Scholar
  19. 19.
    Bansal, G., Zahedi, F.M., Gefen, D.: Do context and personality matter? Trust and privacy concerns in disclosing private information online. Inf. Manag. 53(1), 1–21 (2016)CrossRefGoogle Scholar
  20. 20.
    Sicari, S., Rizzardi, A., Grieco, L., Coen-Porisini, A.: Security, privacy and trust in Internet of Things: the road ahead. Comput. Netw. 76, 146–164 (2015)CrossRefGoogle Scholar
  21. 21.
    Ostherr, K., Borodina, S., Bracken, R.C., Lotterman, C., Storer, E., Williams, B.: Trust and privacy in the context of user-generated health data. Big Data Soc. 4(1), 2053951717704673 (2017)CrossRefGoogle Scholar
  22. 22.
    Ye, H., Cheng, X., Yuan, M., Xu, L., Gao, J., Cheng, C.: A survey of security and privacy in big data. In: 2016 16th International Symposium on Communications and Information Technologies (ISCIT), pp. 268–272, September 2016Google Scholar
  23. 23.
    Liu, K., Terzi, E.: A framework for computing the privacy scores of users in online social networks. ACM Trans. Knowl. Discov. Data (TKDD) 5(1), 6 (2010)Google Scholar
  24. 24.
    Joinson, A.N., Reips, U.-D., Buchanan, T., Schofield, C.B.P.: Privacy, trust, and self-disclosure online. Hum. Comput. Interact. 25(1), 1–24 (2010)CrossRefGoogle Scholar
  25. 25.
    Beheshti, S., Venugopal, S., Ryu, S.H., Benatallah, B., Wang, W.: Big data and cross-document coreference resolution: current state and future opportunities. CoRR, vol. abs/1311.3987 (2013).
  26. 26.
    Beheshti, S., Nezhad, H.R.M., Benatallah, B.: Temporal provenance model (TPM): model and query language. CoRR, vol. abs/1211.5009 (2012)Google Scholar
  27. 27.
    Beheshti, S., et al.: A systematic review and comparative analysis of cross-document coreference resolution methods and tools. Computing 99(4), 313–349 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Beheshti, S.-M.-R., Benatallah, B., Sakr, S., Grigori, D., Motahari-Nezhad, H.R., Barukh, M.C., Gater, A., Ryu, S.H.: Process Analytics: Concepts and Techniques for Querying and Analyzing Process Data. Springer, Cham (2016). Scholar
  29. 29.
    Beheshti, S.-M.-R., Benatallah, B., Motahari-Nezhad, H.R., Sakr, S.: A query language for analyzing business processes execution. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 281–297. Springer, Heidelberg (2011). Scholar
  30. 30.
    Allahbakhsh, M., Arbabi, S., Motahari-Nezhad, H.R., Benatallah, B.: Big data analytics using cloud and crowd. CoRR, vol. abs/1604.04749 (2016).

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Ferdowsi University of MashhadMashhadIran
  2. 2.University of ZabolZabolIran
  3. 3.The University of New South WalesSydneyAustralia

Personalised recommendations