Advertisement

Full-Hiding (Unbounded) Multi-input Inner Product Functional Encryption from the k-Linear Assumption

  • Pratish DattaEmail author
  • Tatsuaki Okamoto
  • Junichi Tomida
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10770)

Abstract

This paper presents two non-generic and practically efficient private key multi-input functional encryption (MIFE) schemes for the multi-input version of the inner product functionality that are the first to achieve simultaneous message and function privacy, namely, the full-hiding security for a non-trivial multi-input functionality under well-studied cryptographic assumptions. Our MIFE schemes are built in bilinear groups of prime order, and their security is based on the standard k-Linear (k-LIN) assumption (along with the existence of semantically secure symmetric key encryption and pseudorandom functions). Our constructions support polynomial number of encryption slots (inputs) without incurring any super-polynomial loss in the security reduction. While the number of encryption slots in our first scheme is apriori bounded, our second scheme can withstand an arbitrary number of encryption slots. Prior to our work, there was no known MIFE scheme for a non-trivial functionality, even without function privacy, that can support an unbounded number of encryption slots without relying on any heavy-duty building block or little-understood cryptographic assumption.

Keywords

Multi-input functional encryption Inner products Full-hiding security Unbounded arity Bilinear maps 

References

  1. 1.
    Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_33 Google Scholar
  2. 2.
    Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional encryption for inner products: function-hiding realizations and constructions without pairings. Cryptology ePrint Archive, Report 2017/972 (2017)Google Scholar
  3. 3.
    Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_21 CrossRefGoogle Scholar
  4. 4.
    Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prabhakaran, M., Sahai, A.: Function private functional encryption and property preserving encryption: New definitions and positive results. Cryptology ePrint Archive, Report 2013/744 (2013)Google Scholar
  5. 5.
    Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_32 CrossRefGoogle Scholar
  6. 6.
    Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47989-6_15 CrossRefGoogle Scholar
  7. 7.
    Badrinarayanan, S., Gupta, D., Jain, A., Sahai, A.: Multi-input functional encryption for unbounded arity functions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 27–51. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_2 CrossRefGoogle Scholar
  8. 8.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_1 CrossRefGoogle Scholar
  9. 9.
    Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 470–491. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_20 CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryption: hiding the function in functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_26 CrossRefGoogle Scholar
  11. 11.
    Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership encryption and its applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 255–275. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42033-7_14 CrossRefGoogle Scholar
  12. 12.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_16 CrossRefGoogle Scholar
  13. 13.
    Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the private-key setting: stronger security from weaker assumptions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 852–880. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_30 CrossRefGoogle Scholar
  14. 14.
    Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 306–324. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_12 CrossRefGoogle Scholar
  15. 15.
    Cash, D., Liu, F.H., O’Neill, A., Zhang, C.: Reducing the leakage in practical order-revealing encryption. Cryptology ePrint Archive, Report 2016/661 (2016)Google Scholar
  16. 16.
    Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical order-revealing encryption with limited leakage. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 474–493. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-52993-5_24 CrossRefGoogle Scholar
  17. 17.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_26 CrossRefGoogle Scholar
  18. 18.
    Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49384-7_7 CrossRefGoogle Scholar
  19. 19.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_1 CrossRefGoogle Scholar
  20. 20.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. SIAM J. Comput. 45, 882–929 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 480–511. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49099-0_18 CrossRefGoogle Scholar
  22. 22.
    Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: symposium on Theory of computing-STOC 2013, pp. 467–476. ACM (2013)Google Scholar
  23. 23.
    Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A., Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_32 CrossRefGoogle Scholar
  24. 24.
    Goyal, V., Jain, A., O’Neill, A.: Multi-input functional encryption with unbounded-message security. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 531–556. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_18 CrossRefGoogle Scholar
  25. 25.
    Iovino, V., Tang, Q., Zebrowski, K.: On the power of public-key functional encryption with function privacy. Cryptology ePrint Archive, Report 2015/470 (2015)Google Scholar
  26. 26.
    Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 668–697. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_26 CrossRefGoogle Scholar
  27. 27.
    Kim, S., Lewi, K., Mandal, A., Montgomery, H.W., Roy, A., Wu, D.J.: Function-hiding inner product encryption is practical. Cryptology ePrint Archive, Report 2016/440 (2016)Google Scholar
  28. 28.
    Komargodski, I., Segev, G.: From minicrypt to obfustopia via private-key functional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 122–151. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56620-7_5 CrossRefGoogle Scholar
  29. 29.
    Komargodski, I., Segev, G., Yogev, E.: Functional encryption for randomized functionalities in the private-key setting from minimal assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 352–377. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_14 CrossRefGoogle Scholar
  30. 30.
    Lee, K., Lee, D.H.: Two-input functional encryption for inner products from bilinear maps. Cryptology ePrint Archive, Report 2016/432 (2016)Google Scholar
  31. 31.
    Lewi, K., Wu, D.J.: Order-revealing encryption: new constructions, applications, and lower bounds. In: ACM SIGSAC Conference on Computer and Communications Security-CCS 2016, pp. 1167–1178. ACM (2016)Google Scholar
  32. 32.
    Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 599–629. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_20 CrossRefGoogle Scholar
  33. 33.
    Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In: Foundations of Computer Science-FOCS 2016, pp. 11–20. IEEE (2016)Google Scholar
  34. 34.
    Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10366-7_13 CrossRefGoogle Scholar
  35. 35.
    Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_11 CrossRefGoogle Scholar
  36. 36.
    O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010)Google Scholar
  37. 37.
    Shacham, H.: A cramer-shoup encryption scheme from the linear assumption and from progressively weaker linear variants. Cryptology ePrint Archive, Report 2007/074 (2007)Google Scholar
  38. 38.
    Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00457-5_27 CrossRefGoogle Scholar
  39. 39.
    Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-product values with full-hiding security. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 408–425. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45871-7_24 CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2018

Authors and Affiliations

  • Pratish Datta
    • 1
    Email author
  • Tatsuaki Okamoto
    • 1
  • Junichi Tomida
    • 1
  1. 1.NTT Secure Platform LaboratoriesTokyoJapan

Personalised recommendations