Advertisement

GeoGebra as a Tool in Modelling Processes

  • Gilbert Greefrath
  • Hans-Stefan Siller
Chapter
Part of the ICME-13 Monographs book series (ICME13Mo)

Abstract

Applying digital technology in mathematical teaching is frequently cited as important and fundamental to the understanding-based learning of mathematical content. In this article, we study the extent to which the systematic application of the dynamic geometry software GeoGebra supports the competency “Mathematical Modelling”. By giving students an application-oriented modelling problem to solve, modelling processes are analysed, assessed, and represented. By observing students at the 10th grade level with respect to a qualitative study hypotheses are formulated about applying a digital tool at different stages of the modelling cycle.

Keywords

Technology Digital tools Computer Qualitative empirical research 

References

  1. Arzarello, F., Ferrara, F., & Robutti, O. (2012). Mathematical modelling with technology: The role of dynamic representations. Teaching Mathematics and Its Applications, 31(1), 20–30.CrossRefGoogle Scholar
  2. Barzel, B. (2012). Computeralgebra im Mathematikunterricht: Ein Mehrwert—Aber wann? Münster: Waxmann.Google Scholar
  3. Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In: S. J. Cho (Ed.), The Proceedings of the 12th International Congress on Mathematical Education—Intellectual and Attitudinal Challenges (pp. 73–96). New York: Springer.Google Scholar
  4. Blum, W., Drueke-Noe, C., Hartung, R., & Köller, O. (Eds.). (2012). Bildungsstandards Mathematik: konkret. Sekundarstufe I: Aufgabenbeispiele, Unterrichtsanregungen, Fortbildungsideen. Berlin: Cornelsen.Google Scholar
  5. Blum, W., & Leiss, D. (2007). How do students and teachers deal with mathematical modelling problems? The example sugarloaf and the DISUM project. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 222–231). Chichester: Horwood.CrossRefGoogle Scholar
  6. Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects—State, trends and issues in mathematics instruction. Educational studies in mathematics, 22(1), 37–68.CrossRefGoogle Scholar
  7. Büchter, A., & Leuders, T. (2005). Mathematikaufgaben selbst entwickeln (pp. 88–102). Berlin: Cornelsen.Google Scholar
  8. Carreira, S., Amado, N., & Canário, F. (2013). Students’ modelling of linear functions: How GeoGebra stimulates a geometrical approach. In B. Ubuz et al. (Eds.), CERME 8. Proceedings of the 8th Congress of the European Society of Research in Mathematics Education (pp. 1031–1040). Antalya, Turkey, Ankara: Middle East Technical University.Google Scholar
  9. Confrey, J., & Maloney, A. (2007). A theory of mathematical modelling in technological settings. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI study (pp. 57–68). New York: Springer.Google Scholar
  10. Daher, W., & Shahbari, A. (2015). Pre-service teachers’ modelling processes through engagement with model eliciting activities with a technological tool. International Journal of Science and Mathematics Education, 13(Suppl 1), 25–46.CrossRefGoogle Scholar
  11. Fahlgren, M., & Brunström, M. (2014). A model for task design with focus on exploration, explanation, and generalization in a dynamic geometry environment. Technology, Knowledge and Learning, 19, 287–315.CrossRefGoogle Scholar
  12. Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. Zentralblatt für Didaktik der Mathematik, 38(2), 143–162.CrossRefGoogle Scholar
  13. Gallegos, R. R., & Rivera, S. Q. (2015). Developing modelling competencies through the use of technology. In G. A. Stillman et al. (Eds.), Mathematical modelling in education research and practice. Cham/Switzerland: Springer.Google Scholar
  14. Geiger, V. (2011). Factors affecting teachers’ adoption of innovative practices with technology and mathematical modelling. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 305–314). Dordrecht: Springer.CrossRefGoogle Scholar
  15. Hall, J., & Lingefjärd, T. (2016). Mathematical modeling—Applications with GeoGebra. Hoboken, New Jersey: Wiley.Google Scholar
  16. Hohenwarter, M., Hohenwarter, J., Kreis, Y., & Lavicza, Z. (2008). Teaching and learning calculus with free dynamic mathematics software GeoGebra. In TSG 16: Research and development in the teaching and learning of calculus ICME 11, Monterrey, Mexico 2008. https://archive.geogebra.org/static/publications/2008-ICME-TSG16-Calculus-GeoGebra-Paper.pdf.
  17. KMK. (2015). Bildungsstandards im Fach Mathematik für die Allgemeine Hochschulreife. Bonn und Berlin: Wolters Kluwer.Google Scholar
  18. Laakmann, H. (2005). Die Piratenaufgabe—Verschieden darstellen, verschieden bearbeiten. In B. Barzel, S. Hussmann, & T. Leuders (Eds.), Computer, Internet & Co. im Mathematikunterricht (pp. 85–94). Berlin: Cornelsen Scriptor.Google Scholar
  19. Moreno-Armella, L., Hegedus, S., & Kaput, J. (2008). From static to dynamic mathematics: Historical and representational perspectives. Educational Studies in Mathematics, 68, 99–111.CrossRefGoogle Scholar
  20. Monaghan, J., Trouche, L., & Borwein, J. (2016). Tools and mathematics: Instruments for learning. New York: Springer.CrossRefGoogle Scholar
  21. Pead, D., Bill, R., & Muller, E. (2007). Uses of technologies in learning mathematics through modelling. In W. Blum et al. (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (pp. 309–318). New York: Springer.Google Scholar
  22. Riebel, J. (2010). Modellierungskompetenzen beim mathematischen Problemlösen—Inventarisierung von Modellierungsprozessen beim Lösen mathematischer Textaufgaben und Entwicklung eines diagnostischen Instrumentariums. Dissertation, Universität Koblenz-Landau, Fachbereich Psychologie, Landau.Google Scholar
  23. Rögler, P. (2014). Überzeugungen von Mathematiklehrkräften als Basis zur Entwicklung von Lehrerfortbildung zu Technologien im Unterricht. Beiträge zum Mathematikunterricht (pp. 983–986). WTM: Münster.Google Scholar
  24. Siller, H.-St., & Greefrath, G. (2010). Mathematical modelling in class regarding to technology. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the 6th Congress of the European Society for Research in Mathematics Education (CERME 6), January 28–February 1, 2009, Lyon (France).Google Scholar
  25. Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and techniques. Thousand Oaks/California: Sage.Google Scholar
  26. Vehring, J. (2012). Mathematische Modellierung mit einer dynamischen Geometriesoftware. Eine empirische Untersuchung anhand der Piratenaufgabe. master thesis, University of Münster.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of MünsterMünsterGermany
  2. 2.University of WürzburgWürzburgGermany

Personalised recommendations