Optical Sensing Based on Rare-Earth-Doped Tellurite Glasses

  • M. Reza Dousti
  • Weslley Q. Santos
  • Carlos Jacinto


Tellurite glasses are among the most interesting host matrices for various optical applications. The excellent optical and thermal properties of tellurite glasses are due to their high linear and nonlinear refractive indices, good transparency window, low phonon energy, high rare-earth solubility, and thermal stability. One of the promising applications of tellurite glasses is in optical thermometry. In this chapter, we review the fundaments of thermometry by luminescence spectroscopy, the theoretical background to calculate the thermal sensibility of rare-earth ion-doped materials, and some examples of the thermometry done on tellurite glasses as well as some other host matrices. For example, Er3+-doped tellurite glasses are given as thermal sensors applied in the visible spectral region, where the fluorescent intensity ratio of two green emission bands plays the role to optically determine the temperature. On the other hand, Nd3+ ion-doped glasses could be used to measure the temperature in the near-infrared region, using the intensity ratio variations of principal emissions in the 800–1400 nm spectral range. Thermal sensibility of each case is compared to various glass host compositions.


Tellurite glasses Thermometry Rare-earth ions Optical sensor 



We would like to thank the Brazilian funding agencies for the support of this research: CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FINEP (Financiadora de Estudos e Projetos) by means of CT-INFRA projects (INFRAPESQ-11 and INFRAPESQ-12), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior) Grant PNPD-CAPES, and FAPEAL (Fundação de Amparo à Pesquisa do Estado de Alagoas), Grant 60030-000384/2017. W. Q. Santos is supported by a postdoctoral fellowship grant from CAPES (PNPD program). The authors are thankful to Prof. R. El-Mallawany, the editor of this book, for his kind invitation to contribute to this chapter.


  1. 1.
    X. Huang, J. Lin, J. Mater. Chem. C 3, 7652–7657 (2015)CrossRefGoogle Scholar
  2. 2.
    C.D.S. Brites, P.P. Lima, N.J.O. Silva, A. Mill, V.S. Amaral, D. Carlos, Nanoscale 4, 4799–4829 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    D. Jaque, F. Vetrone, Nanoscale 4, 4301–4326 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    A.F. Pereira, J.F. Silva, A.S. Gouveia-Neto, C. Jacinto, Sensors Actuators B Chem. 238, 525–531 (2017)CrossRefGoogle Scholar
  5. 5.
    C. Ximendes, U. Rocha, T.O. Sales, N. Fernández, F. Sanz-Rodríguez, I.R. Martín, C. Jacinto, D. Jaque, Adv. Funct. Mater. 27, 1702249 (2017)CrossRefGoogle Scholar
  6. 6.
    E.C. Ximendes, W.Q. Santos, U. Rocha, U.K. Kagola, F. Sanz-Rodríguez, N. Fernández, A.D.S. Gouveia-Neto, D. Bravo, A.M. Domingo, B. Del Rosal, C.D.S. Brites, L.D. Carlos, D. Jaque, C. Jacinto, Nano Lett. 16, 1695–1703 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    L.D. Carlos, F. Palacio, Thermometry at the Nanoscale: Techniques and Selected Applications (Royal Society of Chemistry, Cambridge, UK, 2015)Google Scholar
  8. 8.
    J.F. Gillooly, J.H. Brown, G.B. West, V.M. Savage, E.L. Charnov, Science (80-. ) 293, 2248–2251 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    U. Rocha, K. Upendra Kumar, C. Jacinto, J. Ramiro, A.J. Caamarro, J. Garcia Sole, D. Jaque, Appl. Phys. Lett. 104, 2012–2017 (2014)CrossRefGoogle Scholar
  10. 10.
    E. Carrasco, B. Del Rosal, F. Sanz-Rodríguez, Á.J. De La Fuente, P.H. Gonzalez, U. Rocha, K.U. Kumar, C. Jacinto, J.G. Solé, D. Jaque, Adv. Funct. Mater. 25, 615–626 (2015)CrossRefGoogle Scholar
  11. 11.
    D. Jaque, C. Jacinto, J. Lumin. 169, 394–399 (2016)CrossRefGoogle Scholar
  12. 12.
    E.C. Ximendes, U. Rocha, C. Jacinto, K.U. Kumar, D. Bravo, F.J. López, E.M. Rodríguez, J. García-Soléb, D. Jaque, Nanoscale 8, 3057–3066 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    E.C. Ximendes, U. Rocha, K.U. Kumar, C. Jacinto, D. Jaque, Appl. Phys. Lett. 108, 253103 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    H. Berthou, C.K. Jörgensen, Opt. Lett. 15, 1100–1102 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    K.U. Kumar, W.Q. Santos, W.F. Silva, C. Jacinto, J. Nanosci. Nanotechnol. 13, 6841–6845 (2013)CrossRefGoogle Scholar
  16. 16.
    E. Saïdi, B. Samson, L. Aigouy, S. Volz, P. Löw, C. Bergaud, M. Mortier, Nanotechnology 20, 115703/1–115703/8 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    C. Pérez-Rodríguez, L.L. Martín, S.F. León-Luis, I.R. Martín, Sensors Actuators B Chem. 195, 324–331 (2014)CrossRefGoogle Scholar
  18. 18.
    S.F. León-Luis, U.R. Rodríguez-Mendoza, P. Haro-González, I.R. Martín, V. Lavín, Sensors Actuators B Chem. 174, 176–186 (2012)CrossRefGoogle Scholar
  19. 19.
    A.F. Pereira, K.U. Kumar, W.F. Silva, W.Q. Santos, D. Jaque, C. Jacinto, Sensors Actuators B Chem. 213, 65–71 (2015)CrossRefGoogle Scholar
  20. 20.
    V.K. Rai, Appl. Phys. B Lasers Opt. 88, 297–303 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    S.A. Wade, S.F. Collins, G.W. Baxter, J. Appl. Phys. 94, 4743 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    A. Benayas, B. Del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G.A. Hirata, F. Vetrone, Adv. Opt. Mater. 3, 687–694 (2015)CrossRefGoogle Scholar
  23. 23.
    E.N. Cerõn, D.H. Ortgies, B. Del Rosal, F. Ren, A. Benayas, F. Vetrone, D. Ma, F. Sanz-Rodríguez, J.G. Solé, D. Jaque, E.M. Rodríguez, Adv. Mater. 27, 4781–4787 (2015)CrossRefGoogle Scholar
  24. 24.
    A.K. Kewell, G.T. Reed, F. Namavar, Sensors Actuators 65, 160–164 (1998)Google Scholar
  25. 25.
    Z.P. Cai, H.Y. Xu, Sensors Actuators A Phys. 108, 187–192 (2003)CrossRefGoogle Scholar
  26. 26.
    B.A. Weinstein, Rev. Sci. Instrum. 57, 910–913 (1986)ADSCrossRefGoogle Scholar
  27. 27.
    V.K. Rai, S.B. Rai, Appl. Phys. B Lasers Opt. 87, 323–325 (2007)MathSciNetCrossRefGoogle Scholar
  28. 28.
    P.V. Dos Santos, M.T. de Araujo, A.S. Gouveia-Neto, J.A. Medeiros Neto, A.S.B. Sombra, IEEE J. Quantum Electron. 35, 395–399 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, P. Miluski, J. Lumin. 151, 155–160 (2014)CrossRefGoogle Scholar
  30. 30.
    E.A. Lalla, S.F. León-Luis, V. Monteseguro, C. Pérez-Rodríguez, J.M. Cáceres, J. Lumin. 166, 209–214 (2015)CrossRefGoogle Scholar
  31. 31.
    V.K. Rai, IEEE Sensors J. 7, 1110–1111 (2007)CrossRefGoogle Scholar
  32. 32.
    V.K. Rai, D.K. Rai, S.B. Rai, Sensors Actuators A Phys. 128, 14–17 (2006)CrossRefGoogle Scholar
  33. 33.
    H. Kusama, O.J. Sovers, T. Yoshioka, Jpn. J. Appl. Phys. 15, 2349–2358 (1976)ADSCrossRefGoogle Scholar
  34. 34.
    F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, J.A. Capobianco, ACS Nano 4, 3254–3258 (2010)CrossRefGoogle Scholar
  35. 35.
    R.A.H. El-Mallawany, Tellurite Glasses Handbook: Physical Properties and Data, 1st edn. (CRC Press, Boca Raton, 2002.), 2.nd Ed. (2011)zbMATHGoogle Scholar
  36. 36.
    M.R. Dousti, R.J. Amjad, M.R. Sahar, Z.M. Zabidi, A.N. Alias, A.S.S. De Camargo, J. Non-Cryst. Solids 429, 70–78 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    I. Jlassi, H. Elhouichet, M. Ferid, C. Barthou, J. Lumin. 130, 2394–2401 (2010)CrossRefGoogle Scholar
  38. 38.
    R. El-Mallawany, J. Appl. Phys. 72, 1774 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    H. Zhan, A. Zhang, J. He, Z. Zhou, J. Si, A. Lin, Appl. Opt. 52, 9–11 (2013)CrossRefGoogle Scholar
  40. 40.
    S.F. León-Luis, U.R. Rodríguez-Mendoza, E. Lalla, V. Lavín, Sensors Actuators B Chem. 158, 208–213 (2011)CrossRefGoogle Scholar
  41. 41.
    S.F. León-Luis, U.R. Rodríguez-Mendoza, P. Haro-González, I.R. MartÚn, V. Lavín, Chem. Sensors Actuators B 174, 176–186 (2012)Google Scholar
  42. 42.
    G. Jiang, S. Zhou, X. Wei, Y. Chen, C. Duan, M. Yin, B. Yang, W. Cao, RSC Adv. 6, 11795–11801 (2016)CrossRefGoogle Scholar
  43. 43.
    X. Huang, B. Li, C. Peng, G. Song, Y. Peng, Z. Xiao, X. Liu, J. Yang, L. Yu, J. Hu, Nanoscale 8, 1040–1048 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    A. Pandey, V.K. Rai, V. Kumar, V. Kumar, H.C. Swart, Sensors Actuators B Chem. 209, 352–358 (2015)CrossRefGoogle Scholar
  45. 45.
    O.I.A. Savchuk, J.J. Carvajal, C. Cascales, M. Aguiló, F. Díaz, Appl. Mater. Interfaces 8, 7266–7273 (2016)CrossRefGoogle Scholar
  46. 46.
    A. Skripka, A. Benayas, R. Marin, P. Canton, E. Hemmera, F. Vetrone, Nanoscale 9, 3079–3085 (2017)CrossRefGoogle Scholar
  47. 47.
    X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, X. Yan, RSC Adv. 5, 86219–86236 (2015)CrossRefGoogle Scholar
  48. 48.
    X. Li, Y. Yu, Z. Zheng, Ceram. Int. 42, 490–494 (2015)CrossRefGoogle Scholar
  49. 49.
    V.K. Bogdanov, D.J. Booth, W.E.K. Gibbs, J. Non-Cryst. Solids 311, 48–53 (2002)Google Scholar
  50. 50.
    L. E. K. A. Gschneidner Jr. (ed.), Handbook on the Physics and Chemistry of Rare Earths (Elsevier Science Publisher, Cambridge, UK, 1998), pp. 101–264Google Scholar
  51. 51.
    S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, N. Soga, J. Appl. Phys. 73, 8451–8454 (1993)ADSCrossRefGoogle Scholar
  52. 52.
    D. Manzani, J.F.d.S. Petruci, K. Nigoghossian, A.A. Cardoso, S.J.L. Ribeiro, Sci. Rep. 7, 41596 (2017)ADSCrossRefGoogle Scholar
  53. 53.
    S.F. León-Luis, U.R. Rodríguez-Mendoza, I.R. Martín, E. Lalla, V. Lavín, Sensors Actuators B Chem. 176, 1167–1175 (2013)CrossRefGoogle Scholar
  54. 54.
    F. Auzel, Energy Transfer and Migration of Excitation in Solids and Confined Structures. In: B. di Bartolo (ed.), Spectroscopy and dynamics of collective excitations in solids (Plenum Press, New York; London, 1997), pp. 1–559CrossRefGoogle Scholar
  55. 55.
    F. Auzel, P. Goldner, G.F. De Sa, J. Non-Cryst. Solids 265, 185–189 (2000)ADSCrossRefGoogle Scholar
  56. 56.
    P.V. dos Santos, M.T. De Araujo, A.S. Gouveia-Neto, J.A. Medeiros Neto, A.S.B. Sombra, Appl. Phys. Lett. 73 (1998).
  57. 57.
    K. Annapoorani, N. Suriya Murthy, T.R. Ravindran, K. Marimuthu, J. Lumin. 171, 19–23 (2016)CrossRefGoogle Scholar
  58. 58.
    G.Z. Sui, X.P. Li, L.H. Cheng, J.S. Zhang, J.S. Sun, H.Y. Zhong, Y. Tian, S.B. Fu, B.J. Chen, Appl. Phys. B Lasers Opt. 110(4), 471–476 (2013)Google Scholar
  59. 59.
    N. Vijaya, P. Babu, V. Venkatramu, C.K. Jayasankar, S.F. León-Luis, U.R. Rodríguez-Mendoza, I.R. Martín, V. Lavín, Sensors Actuators B Chem. 186, 156–164 (2013)CrossRefGoogle Scholar
  60. 60.
    P. Haro-González, S.F. León-Luis, S. González-Pérez, I.R. Martín, Mater. Res. Bull. 46, 1051–1054 (2011)CrossRefGoogle Scholar
  61. 61.
    P. Haro-González, I.R. Martín, L.L. Martín, S.F. León-Luis, C. Pérez-Rodríguez, V. Lavín, Opt. Mater. (Amst). 33, 742–745 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    W.A. Pisarski, J. Pisarska, R. Lisiecki, W. Ryba-Romanowski, Opt. Mater. (Amst). 59, 87–90 (2016)ADSCrossRefGoogle Scholar
  63. 63.
    A.S.S. De Camargo, J.F. Possatto, L.A.D.O. Nunes, E.R. Botero, E.R.M. Andreeta, D. Garcia, J.A. Eiras, Solid State Commun. 137, 1–5 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    P. Du, L.H. Luo, W.P. Li, Q. Yue, H. Chen, Appl. Phys. Lett. 104, 152902 (2014)ADSCrossRefGoogle Scholar
  65. 65.
    A. Pandey, S. Som, V. Kumar, V. Kumar, K. Kumar, V. Kumar, H.C. Swart, Sensors Actuators B Chem. 202, 1305–1312 (2014)CrossRefGoogle Scholar
  66. 66.
    B. Lai, L. Feng, J. Wang, Q. Su, Opt. Mater. (Amst). 32, 1154–1160 (2010)ADSCrossRefGoogle Scholar
  67. 67.
    C. Li, B. Dong, S. Li, C. Song, Chem. Phys. Lett. 443, 426–429 (2007)ADSCrossRefGoogle Scholar
  68. 68.
    P. Du, J.S. Yu, Ceram. Int. 41, 6710–6714 (2015)CrossRefGoogle Scholar
  69. 69.
    P. Du, L.H. Luo, W. Li, Q. Yue, J. Appl. Phys. 116, 14102 (2014)CrossRefGoogle Scholar
  70. 70.
    R.K. Kumar Rai, Sensors Actuators B Chem. 210, 581–588 (2015)CrossRefGoogle Scholar
  71. 71.
    W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, W. Cao, Sensors Actuators B Chem. 188, 1096–1100 (2013)CrossRefGoogle Scholar
  72. 72.
    O.A. Savchuk, J.J. Carvajal, M.C. Pujol, E.W. Barrera, J. Massons, M. Aguilo, F. Diaz, J. Phys. Chem. C 119, 18546–18558 (2015)CrossRefGoogle Scholar
  73. 73.
    S. Ćulubrk, V. Lojpur, S.P. Ahrenkiel, J.M. Nedeljković, M.D. Dramićanin, J. Lumin. 170, 395–400 (2016)Google Scholar
  74. 74.
    U. Rocha, C. Jacinto da Silva, W.F. Silva, I. Guedes, A. Benayas, L.M. Maestro, M.A. Elias, E. Bovero, F.C.J.M. van Veggel, J.A.G. Solé, D. Jaque, Subtissue thermal sensing based on meodymium-doped LaF nanoparticles. ACS Nano 7(2), 1188–1199 (2013)CrossRefGoogle Scholar
  75. 75.
    U. Rocha, K.U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M.d.C.I. de la Cruz, A. Juarranz, E. Carrasco, F.C.J.M. van Veggel, E. Bovero, J.G. Solé, D. Jaque, Neodymium-doped LaF nanoparticles for fluorescence bioimaging in the second biological window. Small 10(6), 1141–1154 (2014)CrossRefGoogle Scholar
  76. 76.
    I. Villa, A. Vedda, I.X. Cantarelli, M. Pedroni, F. Piccinelli, M. Bettinelli, A. Speghini, M. Quintanilla, F. Vetrone, U. Rocha, C. Jacinto, E. Carrasco, F.S. Rodríguez, Á. Juarranz, B. del Rosal, D.H. Ortgies, P.H. Gonzalez, J.G. Solé, D. Jaque, 1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Res. 8(2), 649–665 (2015)CrossRefGoogle Scholar
  77. 77.
    E. Carrasco, B. del Rosal, F. Sanz-Rodríguez, Á.J. de la Fuente, P.H. Gonzalez, U. Rocha, K.U. Kumar, C. Jacinto, J.G. Solé, D. Jaque, Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles. Adv. Funct. Mater. 25(4), 615–626 (2015)CrossRefGoogle Scholar
  78. 78.
    B. del Rosal, A. Pérez-Delgado, M. Misiak, A. Bednarkiewicz, A.S. Vanetsev, Y. Orlovskii, D.J. Jovanović, M.D. Dramićanin, U. Rocha, K.U. Kumar, C. Jacinto, E. Navarro, E.M. Rodríguez, M. Pedroni, A. Speghini, G.A. Hirata, I.R. Martín, D. Jaque, Neodymium-doped nanoparticles for infrared fluorescence bioimaging: The role of the host. J. Appl. Phys. 118(14), 143104 (2015)ADSCrossRefGoogle Scholar
  79. 79.
    I.E. Kolesnikov, E.V. Golyeva, A.A. Kalinichev, M.A. Kurochkin, E. Lähderant, M.D. Mikhailov, Sensors Actuators B Chem. 243, 338–345 (2017)CrossRefGoogle Scholar
  80. 80.
    S. Balabhadra, M.L. Debasu, C.D.S. Brites, L.A.O. Nunes, O.L. Malta, J. Rocha, M. Bettinellie, L.D. Carlos, Nanoscale 7, 17261–17267 (2015)ADSCrossRefGoogle Scholar
  81. 81.
    M. Sobczyk, J. Quant. Spectrosc. Radiat. Transf. 119, 128–136 (2013)ADSCrossRefGoogle Scholar
  82. 82.
    W. Xu, H. Zhao, Z.G. Zhang, W.W. Cao, Sensors Actuators B Chem. 178, 520–524 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • M. Reza Dousti
    • 1
  • Weslley Q. Santos
    • 1
  • Carlos Jacinto
    • 1
  1. 1.Grupo de Nano-Fotônica e Imagens, Instituto de Física, Universidade Federal de AlagoasMaceióBrazil

Personalised recommendations