Spermatogenic Stem Cell Cryopreservation and Transplantation

  • Sherman Silber


It was first shown by Ralph Brinster that spermatogenic stem cells derived from testis tissue of normal mice can be transferred via the rete testis into mice with no spermatogenesis, and they will gradually populate stem cell niches all along the seminiferous tubules of large areas of the previously sterile recipient mouse testis and result in normal spermatogenesis and ultimately in normal offspring (Fig. 18.1) [1, 2]. Subsequently spermatogenic stem cells from a variety of species were successfully transplanted into SCID mice. The closer the phylum of the donor spermatogenic stem cells to the sterilized recipient mouse, the farther along the spermatogenesis of the transplanted germ cells would develop (Fig. 18.2). For example, rat stem cells would develop mature sperm in the SCID mouse but at the rate of rat spermatogenesis rather than mouse spermatogenesis. For more distant phyla, the final stages of spermatogenesis are not seen although earlier stages are well supported [3–8]. Frozen spermatogenic stem cells did just as well as fresh [9].


  1. 1.
    Hamra FK, Chapman KM, Nguyen DM, Williams-Stephens AA, Hammer RE, Garbers DL (2005) Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proc Natl Acad Sci U S A 102(48):985–991CrossRefGoogle Scholar
  2. 2.
    Kanatsu-Shinohara M, Muneto T, Lee J, Takenaka M, Chuma S, Nakatsuji N, Horiuchi T, Shinohara T (2008) Long term culture of male germline stem cells from hamster testes. Biol Reprod 78(4):611–617CrossRefPubMedGoogle Scholar
  3. 3.
    Nagano M, Patrizio P, Brinster RL (2002) Long-term survival of human spermatogonial stem cells in mouse testes. Fertil Steril 78(6):1225–1233CrossRefPubMedGoogle Scholar
  4. 4.
    Schlatt S, Rosiepen G, Weinbauer GF, Rolf C, Brook PF, Nieschlag E (1999) Germcell transfer into rat, bovine, monkey and human testes. Hum Reprod 14(1):144–150CrossRefPubMedGoogle Scholar
  5. 5.
    Avarbock MR, Brinster CJ, Brinster RL (1996) Reconstitution of spermatogenesis from frozen spermatogonial stem cells. Nat Med 2:693–696CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sadri-Ardekani H, Mizrak SC, van Daalen SKM, Korver CM, Roepers-Gajadien HL, Koruji M, Hovingh S, de Reijke TM, de la Rosette JJMCH, van der Veen F, de Rooij DG, Repping S, van Pelt AMM (2009) Propagation of human spermatogonial stem cells in vitro. JAMA 302(19):2127–2134CrossRefPubMedGoogle Scholar
  7. 7.
    Mizrak SC, Chikhovskaya JV, Sandri-Ardekani H, van Daalen S, Korver CM, Hovingh SE, Roepers-Gajadien HL, Raya A, Fluiter K, de Reijke TM, de la Rosette JJMCH, Knegt AC, Belmonte JC, van der Veen F, de Rooij DG, Repping S, van Pelt AMM (2010) Embryonic stem cell-like cells derived from adult human testis. Hum Reprod 25(1):158–167CrossRefPubMedGoogle Scholar
  8. 8.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96CrossRefPubMedGoogle Scholar
  9. 9.
    Endoh M, Endo TA, Shinga J et al (2017) Correction: PCGF6-PRC1 suppresses premature differentiation of mouse embryonic stem cells by regulating germ cell-related genes. elife 6:e27970PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bleyer WA (1990) The impact of childhood cancer on the United States and the world. CA Cancer J Clin 40(6):355–367CrossRefPubMedGoogle Scholar
  11. 11.
    Blatt J (1999) Pregnancy outcome in long-term survivors of childhood cancer. Med Pediatr Oncol 33(1):29–33CrossRefPubMedGoogle Scholar
  12. 12.
    Hayashi K, Saitou M (2013) Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells. Nat Protoc 8:1513–1524CrossRefPubMedGoogle Scholar
  13. 13.
    Hayashi K, Saitou M (2013) Stepwise differentiation from naive state pluripotent stem cells to functional primordial germ cells through an epiblast-like state. Methods Mol Biol 1074:175–183CrossRefPubMedGoogle Scholar
  14. 14.
    Pendergraft SS, Sadri-Ardekani H, Atala A, Bishop CE (2017) Three-dimensional testicular organoid: a novel tool for the study of human spermatogenesis and gonadotoxicity in vitro. Biol Reprod 96:720–732CrossRefPubMedGoogle Scholar
  15. 15.
    Galdon G, Atala A, Sadri-Ardekani H (2016) In vitro spermatogenesis: how far from clinical application? Curr Urol Rep 17:49CrossRefPubMedGoogle Scholar
  16. 16.
    Sadri-Ardekani H, McLean TW, Kogan S et al (2016) Experimental testicular tissue banking to generate spermatogenesis in the future: a multidisciplinary team approach. Methods 99:120–127CrossRefPubMedGoogle Scholar
  17. 17.
    Sadri-Ardekani H, Atala A (2015) Regenerative medicine for the treatment of reproductive system disorders: current and potential options. Adv Drug Deliv Rev 82-83:145–152CrossRefPubMedGoogle Scholar
  18. 18.
    Kanatsu-Shinohara M, Ogonuki N, Iwano T, Lee J, Kazuki Y, Inoue K, Miki H, Takehashi M, Toyokuni S, Shinkai Y, Oshimura M, Ishino F, Ogura A, Shinohara T (2005) Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development 132(18):4155–4163CrossRefPubMedGoogle Scholar
  19. 19.
    Kanatsu-Shinohara M, Miki H, Inoue K, Ogonuki N, Toyokuni S, Ogura A, Shinohara T (2005) Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol Reprod 72(4):985–991CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hamra FK, Chapman KM, Nguyen DM, Williams-Stephens AA, Hammer RE, Garbers DL (2005) Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proc Natl Acad Sci U S A 102(48):17430–17435CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sadri-Ardekani H, Akhondi MA, van der Veen F, Repping S, van Pelt AM (2011) In vitro propagation of human prepubertal spermatogonial stem cells. JAMA 305(23):2416–2418CrossRefPubMedGoogle Scholar
  22. 22.
    Gill KP, Hung SS, Sharov A et al (2016) Enriched retinal ganglion cells derived from human embryonic stem cells. Sci Rep 6:30552CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hayashi K, Hikabe O, Obata Y, Hirao Y (2017) Reconstitution of mouse oogenesis in a dish from pluripotent stem cells. Nat Protoc 12:1733–1744CrossRefPubMedGoogle Scholar
  24. 24.
    Kuang Y, Miki K, Parr CJC et al (2017) Efficient, selective removal of human pluripotent stem cells via ecto-alkaline phosphatase-mediated aggregation of synthetic peptides. Cell Chem Biol 24:685–94 e4CrossRefPubMedGoogle Scholar
  25. 25.
    McLachlan RI, Rajpert-De Meyts E, Hoei-Hansen CE, de Kretser DM, Skakkebaek NE (2007) Histological evaluation of the human testis-approaches to optimizing the clinical value of the assessment: mini review. Hum Reprod 22:2–16CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sherman Silber
    • 1
    • 2
  1. 1.Infertility Center of St. LouisSt. Luke’s HospitalSt. LouisUSA
  2. 2.University of MichiganAnn ArborUSA

Personalised recommendations