Immunopathology of Neuropsychiatric Systemic Lupus Erythematosus

  • Shunsei Hirohata


There are at least 2 separate and probably complementary pathogenetic mechanisms for NPSLE. One is the predominant ischemic-vascular involvement in large and small blood vessels, mediated mainly by anti-phospholipid antibodies (aPL), leading to focal NPSLE, such as stroke, seizures, movement disorders and myelopathy. The other is the inflammatory process with complement activation, the dysfunction of the blood-brain barrier (BBB), transudation of autoantibodies into the central nervous system (CNS) and local production proinflammatory cytokines such as IFN-α, leading to diffuse NPSLE such as psychosis, mood disorders, cognitive dysfunctions and acute confusional state. In the latter process, autoantibodies, such as anti-ribosomal P antibodies, anti-NMDA receptor NR2 antibodies and anti-Sm antibodies, play a pivotal role. Greater attention is now paid to the role of microglia in the pathogenesis.


Autoantibodies Blood-brain barrier Complement Microglia Proinflammatory cytokines 


  1. 1.
    Gibson T, Myers AR. Nervous system involvement in systemic lupus erythematosus. Ann Rheum Dis. 1975;35:398–406.CrossRefPubMedGoogle Scholar
  2. 2.
    Harris EN, Hughes GR. Cerebral disease in systemic lupus erythematosus. Springer Semin Immunopathol. 1985;8:251–66.CrossRefPubMedGoogle Scholar
  3. 3.
    Ellis SG, Verity MA. Central nervous system involvement in systemic lupus erythematosus: a review of neuropathologic findings in 57 cases, 1955–1977. Semin Arthritis Rheum. 1979;8:212–21.CrossRefPubMedGoogle Scholar
  4. 4.
    Hanly JG, et al. Brain pathology in systemic lupus erythematosus. J Rheumatol. 1992;19:732–41.PubMedGoogle Scholar
  5. 5.
    Cohen D, et al. Brain histopathology in patients with systemic lupus erythematosus: identification of lesions associated with clinical neuropsychiatric lupus syndromes and the role of complement. Rheumatology. 2017;55:77–86.CrossRefGoogle Scholar
  6. 6.
    Sanna G, et al. Neuropsychiatric manifestations in systemic lupus erythematosus: prevalence and association with antiphospholipid antibodies. J Rheumatol. 2003;30:985–92.PubMedGoogle Scholar
  7. 7.
    Andrade RM, et al., LUMINA Study Group. Seizures in patients with systemic lupus erythematosus: data from LUMINA, a multiethnic cohort (LUMINA LIV). Ann Rheum Dis. 2008; 67:829–34.Google Scholar
  8. 8.
    Appenzeller S, et al. Epileptic seizures in systemic lupus erythematosus. Neurology. 2004;63:1808–12.CrossRefPubMedGoogle Scholar
  9. 9.
    McLaurin EY, et al. Predictors of cognitive dysfunction in patients with systemic lupus erythematosus. Neurology. 2005;64:297–303.CrossRefPubMedGoogle Scholar
  10. 10.
    Harris EN, et al. Cross-reactivity of antiphospholipid antibodies. J Clin Lab Immnnol. 1985;16:1–6.Google Scholar
  11. 11.
    Clemens N, et al. In vitro effects of antiphospholipid syndrome-IgG fractions and human monoclonal antiphospholipid IgG antibody on human umbilical vein endothelial cells and monocytes. Ann N Y Acad Sci. 2009;1173:805–13.CrossRefPubMedGoogle Scholar
  12. 12.
    Raschi E, et al. β2-glycoprotein I, lipopolysaccharide and endothelial TLR4: three players in the two hit theory for anti-phospholipid-mediated thrombosis. J Autoimmun. 2014;55:42–50.CrossRefPubMedGoogle Scholar
  13. 13.
    Katzav A, et al. The pathogenesis of neural injury in animal models of the antiphospholipid syndrome. Clin Rev Allergy Immunol. 2010;38:196–200.CrossRefPubMedGoogle Scholar
  14. 14.
    Katzav A, et al. Antibody-specific behavioral effects: intracerebroventricular injection of antiphospholipid antibodies induces hyperactive behavior while anti-ribosomal-P antibodies induces depression and smell deficits in mice. J Neuroimmunol. 2014;272:10–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Hanly JG, et al. A prospective analysis of cognitive function and anticardiolipin antibodies in systemic lupus erythematosus. Arthritis Rheum. 1999;42:728–34.CrossRefPubMedGoogle Scholar
  16. 16.
    Menon S, et al. A longitudinal study of anticardiolipin antibody levels and cognitive functioning in systemic lupus erythematosus. Arthritis Rheum. 1999;42:735–41.CrossRefPubMedGoogle Scholar
  17. 17.
    Elkon K, et al. Identification and chemical synthesis of a ribosomal protein antigenic determinant in systemic lupus erythematosus. Proc Natl Acad Sci U S A. 1986;83:7419–23.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schneebaum AB, et al. Association of psychiatric manifestations with antibodies to ribosomal P proteins in systemic lupus erythematosus. Am J Med. 1991;90:54–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Nojima Y, et al. Correlation of antibodies to ribosomal P protein with psychosis in patients with systemic lupus erythematosus. Ann Rheum Dis. 1992;51:1053–5.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Isshi K, Hirohata S. Association of anti-ribosomal P protein antibodies with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 1996;39:1483–90.CrossRefPubMedGoogle Scholar
  21. 21.
    Karassa FB, et al. Accuracy of anti-ribosomal P protein antibody testing for the diagnosis of neuropsychiatric systemic lupus erythematosus: an international meta-analysis. Arthritis Rheum. 2006;4:312–24.CrossRefGoogle Scholar
  22. 22.
    Haddouk S, et al. Clinical and diagnostic value of ribosomal P autoantibodies in systemic lupus erythematosus. Rheumatology. 2009;48:953–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Bonfa E, et al. Association between lupus psychosis and antiribosomal P protein antibodies. N Engl J Med. 1987;317:265–71.CrossRefPubMedGoogle Scholar
  24. 24.
    West SG, et al. Neuropsychiatric lupus erythematosus: a 10-year prospective study on the value of diagnostic tests. Am J Med. 1995;99:153–63.CrossRefPubMedGoogle Scholar
  25. 25.
    Watanabe T, et al. Neuropsychiatric manifestations in patients with systemic lupus erythematosus: diagnostic and predictive value of longitudinal examination of anti-ribosomal P antibody. Lupus. 1996;5:178–83.CrossRefPubMedGoogle Scholar
  26. 26.
    Briani C, et al. Neurolupus is associated with anti-ribosomal P protein antibodies: an inception cohort study. J Autoimmun. 2009;32:79–84.CrossRefPubMedGoogle Scholar
  27. 27.
    Hanly JG, et al., Systemic Lupus International Collaborating Clinics. Autoantibodies and neuropsychiatric events at the time of systemic lupus erythematosus diagnosis: results from an international inception cohort study. Arthritis Rheum. 2008; 58:843–53.Google Scholar
  28. 28.
    Isshi K, Hirohata S. Differential roles of the anti-ribosomal P antibody and antineuronal antibody in the pathogenesis of central nervous system involvement in systemic lupus erythematosus. Arthritis Rheum. 1998;41:1819–27.CrossRefPubMedGoogle Scholar
  29. 29.
    Hirohata S, et al. Association of cerebrospinal fluid anti-ribosomal P protein antibodies with diffuse psychiatric/neuropsychological syndromes in systemic lupus erythematosus. Arthritis Res Ther. 2007;9:R44.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Koren E, et al. Autoantibodies to the ribosomal P proteins react with a plasma membrane-related target on human cells. J Clin Invest. 1992;89:1236–41.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Elkon K, et al. Properties of the ribosomal P2 protein autoantigen are similar to those of foreign protein antigens. Proc Natl Acad Sci U S A. 1988;85:5186–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Matus S, et al. Antiribosomal-P autoantibodies from psychiatric lupus target a novel neuronal surface protein causing calcium influx and apoptosis. J Exp Med. 2007;204:3221–34.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nagy A, Delgado-Escueta AV. Rapid preparation of synaptosomes from mammalian brain using nontoxic isoosmotic gradient material (Percoll). J Neurochem. 1984;43:1114–23.CrossRefPubMedGoogle Scholar
  34. 34.
    Hirohata S, Nakanishi K. Antiribosomal P protein antibody in human systemic lupus erythematosus reacts specifically with activated T cells. Lupus. 2001;10:612–21.CrossRefPubMedGoogle Scholar
  35. 35.
    Nagai T, et al. Anti-ribosomal P protein antibody in human systemic lupus erythematosus up-regulates the expression of proinflammatory cytokines by human peripheral blood monocytes. Arthritis Rheum. 2005;52:847–55.CrossRefPubMedGoogle Scholar
  36. 36.
    Furukawa H, et al. Subunit arrangement and function in NMDA receptors. Nature. 2005;438:185–92.CrossRefPubMedGoogle Scholar
  37. 37.
    DeGiorgio LA, et al. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med. 2001;7:1189–93.CrossRefPubMedGoogle Scholar
  38. 38.
    Kowal C, et al. Cognition and immunity; antibody impairs memory. Immunity. 2004;21:179–88.CrossRefPubMedGoogle Scholar
  39. 39.
    Arinuma Y, et al. Association of cerebrospinal fluid anti-NR2 glutamate receptor antibodies with diffuse neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 2008;58:1130–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Harrison MJ, et al. Relationship between serum NR2a antibodies and cognitive dysfunction in systemic lupus erythematosus. Arthritis Rheum. 2006;54:2515–22.CrossRefPubMedGoogle Scholar
  41. 41.
    Lapteva L, et al. Anti-N-methyl-D-aspartate receptor antibodies, cognitive dysfunction, and depression in systemic lupus erythematosus. Arthritis Rheum. 2006;54:2505–14.CrossRefPubMedGoogle Scholar
  42. 42.
    Gerosa M, et al. Antiglutamate receptor antibodies and cognitive impairment in primary antiphospholipid syndrome and systemic lupus erythematosus. Front Immunol. 2016;7:5.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Faust TW, et al. Neurotoxic lupus autoantibodies alter brain function through two distinct mechanisms. Proc Natl Acad Sci U S A. 2010;107:18569–74.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hirohata S, et al. Blood-brain barrier damages and intrathecal synthesis of anti-N-methyl-D-aspartate receptor NR2 antibodies in diffuse psychiatric/neuropsychological syndromes in systemic lupus erythematosus. Arthritis Res Ther. 2014;16:R77.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Yoshio T, et al. IgG anti-NR2 glutamate receptor autoantibodies from patients with systemic lupus erythematosus activate endothelial cells. Arthritis Rheum. 2013;65:457–63.CrossRefPubMedGoogle Scholar
  46. 46.
    Iizuka T, et al. Anti-NMDA receptor encephalitis in Japan: long-term outcome without tumor removal. Neurology. 2008;70:504–11.CrossRefPubMedGoogle Scholar
  47. 47.
    Graus F, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016;15:391–404.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Winfield JB, et al. Serologic studies in patients with systemic lupus erythematosus and central nervous system dysfunction. Arthritis Rheum. 1978;21:289–94.CrossRefPubMedGoogle Scholar
  49. 49.
    Yasuma M, et al. Clinical significance of IgG anti-Sm antibodies in patients with systemic lupus erythematosus. J Rheumatol. 1990;17:469–75.PubMedGoogle Scholar
  50. 50.
    Hirohata S, Kosaka M. Association of anti-Sm antibodies with organic brain syndrome secondary to systemic lupus erythematosus. Lancet. 1994;343:796.CrossRefPubMedGoogle Scholar
  51. 51.
    Hirohata S, et al. Association of cerebrospinal fluid anti-Sm antibodies with acute confusional state in systemic lupus erythematosus. Arthritis Res Ther. 2014;16:450.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bluestein HG, et al. Cerebrospinal fluid antibodies to neuronal cells: association with neuropsychiatric manifestations of systemic lupus erythematosus. Am J Med. 1981;70:240–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Ogawa E, et al. Association of antibodies to the NR1 subunit of N-methyl-D-aspartate receptors with neuropsychiatric systemic lupus erythematosus. Mod Rheumatol. 2016;26:377–83.CrossRefPubMedGoogle Scholar
  54. 54.
    Iizuka N, et al. Identification of autoantigens specific for systemic lupus erythematosus with central nervous system involvement. Lupus. 2010;19:717–26.CrossRefPubMedGoogle Scholar
  55. 55.
    Hirano T, et al. Antiglycolipid autoantibody detected in the sera from systemic lupus erythematosus patients. J Clin Invest. 1980;66:1437–40.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Endo T, et al. Antibodies to glycosphingolipids in patients with multiple sclerosis and SLE. J Immunol. 1984;132:1793–7.PubMedGoogle Scholar
  57. 57.
    Williams RC, et al. Antibodies to microtubule-associated protein 2 in patients with neuropsychiatric systemic lupus erythematosus. Arthritis Rheum. 2004;50:1239–47.CrossRefPubMedGoogle Scholar
  58. 58.
    Mader S, et al. Understanding the antibody repertoire in neuropsychiatric systemic lupus erythematosus and neuromyelitis optica spectrum disorders: do they share common targets? Arthritis Rheumatol. 2018;70:277–86.Google Scholar
  59. 59.
    Yoshio T, et al. Antiribosomal P protein antibodies in cerebrospinal fluid are associated with neuropsychiatric systemic lupus erythematosus. J Rheumatol. 2005;32:34–9.PubMedGoogle Scholar
  60. 60.
    Tibbling G, et al. Principles of albumin and IgG analyses in neurological disorders. I. Establishment of reference values. Scand J Clin Lab Invest. 1977;37:385–90.CrossRefPubMedGoogle Scholar
  61. 61.
    Winfield JB, et al. Intrathecal IgG synthesis and blood-brain barrier impairment in patients with systemic lupus erythematosus and central nervous system dysfunction. Am J Med. 1983;74:837–44.CrossRefPubMedGoogle Scholar
  62. 62.
    Hirohata S, et al. Cerebrospinal fluid IgM, IgA, and IgG indexes in systemic lupus erythematosus. Their use as estimates of central nervous system disease activity. Arch Intern Med. 1985;145:1843–6.CrossRefPubMedGoogle Scholar
  63. 63.
    Bhatnagar H, et al. Serum and organ- associated anti-hemoglobin humoral autoreactivity: association with anti-Sm responses and inflammation. Eur J Immunol. 2011;41:537–48.CrossRefPubMedGoogle Scholar
  64. 64.
    Abbott NJ, et al. The blood-brain barrier in systemic lupus erythematosus. Lupus. 2003;12:908–15.CrossRefPubMedGoogle Scholar
  65. 65.
    Zaccagni H, et al. Soluble adhesion molecule levels, neuropsychiatric lupus and lupus-related damage. Front Biosci. 2004;9:1654–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Spronk PE, et al. Levels of soluble VCAM-1, soluble ICAM-1, and soluble E-selectin during disease exacerbations in patients with systemic lupus erythematosus (SLE); a long term prospective study. Clin Exp Immunol. 1994;97:439–44.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Ainiala H, et al. Increased serum metalloproteinase 9 levels in systemic lupus erythematosus patients with neuropsychiatric manifestations and brain magnetic resonance imaging abnormalities. Arthritis Rheum. 2004;50:858–65.CrossRefPubMedGoogle Scholar
  68. 68.
    Jacob A, et al. C5a alters blood-brain barrier integrity in experimental lupus. FASEB J. 2010;24:1682–8.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Jacob A, et al. C5a/CD88 signaling alters blood-brain barrier integrity in lupus through nuclear factor-kappa B. J Neurochem. 2011;119:1041–51.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Mahajan SD, et al. C5a alters blood-brain barrier integrity in a human in vitro model of systemic lupus erythematosus. Immunology. 2015;146:130–43.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Sakuma Y, et al. Differential activation mechanisms of serum C5a in lupus nephritis and neuropsychiatric systemic lupus erythematosus. Mod Rheumatol. 2017;27:292–7.CrossRefPubMedGoogle Scholar
  72. 72.
    Stevens B, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131:1164–78.CrossRefPubMedGoogle Scholar
  73. 73.
    Asano T, et al. Evaluation of blood-brain barrier function by quotient alpha2 macroglobulin and its relationship with interleukin-6 and complement component 3 levels in neuropsychiatric systemic lupus erythematosus. PLoS One. 2017;12:e0186414.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Liddelow SA, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481–7.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Gasque P, et al. Expression of the receptor for complement C5a (CD88) is up-regulated on reactive astrocytes, microglia, and endothelial cells in the inflamed human central nervous system. Am J Pathol. 1997;150:31–41.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Laudes IJ, et al. Expression and function of C5a receptor in mouse microvascular endothelial cells. J Immunol. 2002;169:5962–70.CrossRefPubMedGoogle Scholar
  77. 77.
    Woodruff TM, et al. The role of the complement system and the activation fragment C5a in the central nervous system. NeuroMolecular Med. 2010;12:179–92.CrossRefPubMedGoogle Scholar
  78. 78.
    Lynch MA. The multifaceted profile of activated microglia. Mol Neurobiol. 2009;40:139–56.CrossRefPubMedGoogle Scholar
  79. 79.
    Mondal TK, et al. Autoantibody-mediated neuroinflammation: pathogenesis of neuropsychiatric systemic lupus erythematosus in the NZM88 murine model. Brain Behav Immun. 2008;22:949–59.CrossRefPubMedGoogle Scholar
  80. 80.
    Goldmann T, et al. USP18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO J. 2015;34:1612–29.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Kirou KA, et al. Coordinate overexpression of interferon-α -induced genes in systemic lupus erythematosus. Arthritis Rheum. 2004;50:3958–67.CrossRefPubMedGoogle Scholar
  82. 82.
    Shiozawa S, et al. Interferon-alpha in lupus psychosis. Arthritis Rheum. 1992;35:417–22.CrossRefPubMedGoogle Scholar
  83. 83.
    Bialas AR, Presumey J, Das A, et al. Microglia-dependent synapse loss in type I interferon-mediated lupus. Nature. 2017;546:539–43.PubMedGoogle Scholar
  84. 84.
    Wang J, et al. Microglia activation induced by serum of SLE patients. J Neuroimmunol. 2017;310:135–42.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Shunsei Hirohata
    • 1
    • 2
  1. 1.Department of RheumatologyNobuhara HospitalTatsunoJapan
  2. 2.Department of Rheumatology & Infectious DiseasesKitasato University School of MedicineSagamiharaJapan

Personalised recommendations