Revealing the Load-Balancing Behavior of YouTube Traffic on Interdomain Links

  • Ricky K. P. MokEmail author
  • Vaibhav Bajpai
  • Amogh Dhamdhere
  • K. C. Claffy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10771)


For the last decade, YouTube has consistently been a dominant source of traffic on the Internet. To improve the quality of experience (QoE) for YouTube users, broadband access providers and Google apply techniques to load balance the extraordinary volume of web requests and traffic. We use traceroute-based measurement methods to infer these techniques for assigning YouTube requests to specific Google video content caches, including the interconnection links between the access providers and Google. We then use a year of measurements (mid-2016 to mid-2017) collected from SamKnows probes hosted by broadband customers spanning a major ISP in the U.S. and three ISPs in Europe. We investigate two possible causes of different interdomain link usage behavior. We also compare the YouTube video cache hostnames and IPs observed by the probes, and find that the selection of video cache has little impact on BGP selection of interdomain links.



This work was partly funded by the European Union’s Horizon 2020 research and innovation programme 2014–2018 under grant agreement No. 644866, Scalable and Secure Infrastructures for Cloud Operations (SSICLOPS), and by U.S. National Science Foundation CNS-1414177. This work represents only the position of the authors, and not of funding agencies.


  1. 1.
    Google edge network. Accessed 11 Oct 2017
  2. 2.
    Adhikari, V.K., Jain, S., Chen, Y., Zhang, Z.-L.: Vivisecting YouTube: an active measurement study. In: IEEE INFOCOM (2012)Google Scholar
  3. 3.
    Ahsan, S., Bajpai, V., Ott, J., Schönwälder, J.: Measuring YouTube from dual-stacked hosts. In: PAM (2015)Google Scholar
  4. 4.
    Augustin, B., Teixeira, R., Friedman, T.: Measuring load-balanced paths in the Internet. In: ACM IMC (2007)Google Scholar
  5. 5.
    Bajpai, V., Ahsan, S., Schönwälder, J., Ott, J.: Measuring YouTube content delivery over IPv6. In: ACM SIGCOMM CCR (2017)Google Scholar
  6. 6.
    Bajpai, V., Schönwälder, J.: A survey on internet performance measurement platforms and related standardization efforts. IEEE Commun. Surv. Tutor. 17(3), 1313–1341 (2015)CrossRefGoogle Scholar
  7. 7.
    CAIDA: Archipelago (Ark) measurement infrastructure.
  8. 8.
    Calder, M., Fan, X., Hu, Z., Katz-Bassett, E., Heidemann, J., Govindan, R.: Mapping the expansion of Google’s serving infrastructure. In: ACM IMC (2013)Google Scholar
  9. 9.
    Casas, P., Fiadino, P., Bar, A., D’Alconzo, A., Finamore, A., Mellia, M.: YouTube all around: characterizing YouTube from mobile and fixed-line network vantage points. In: EuCNC (2014)Google Scholar
  10. 10.
    Fan, X., Katz-Bassett, E., Heidemann, J.: Assessing affinity between users and CDN sites. In: IFIP TMA (2015)Google Scholar
  11. 11.
    FCC: Measuring broadband America fixed broadband report, December 2016. Accessed 15 Oct 2017
  12. 12.
    Finamore, A., Mellia, M., Munafò, M.M., Torres, R., Rao, S.G.: YouTube everywhere: impact of device and infrastructure synergies on user experience. In: ACM IMC (2011)Google Scholar
  13. 13.
    Gill, P., Arlitt, M., Li, Z., Mahanti, A.: Youtube traffic characterization: a view from the edge. In: ACM IMC (2007)Google Scholar
  14. 14.
    Giordano, D., Traverso, S., Grimaudo, L., Mellia, M., Baralis, E., Tongaonkar, A., Saha, S.: YouLighter: a cognitive approach to unveil YouTube CDN and changes. IEEE Trans. Cognit. Commun. Netw. 1(2), 161–174 (2015)CrossRefGoogle Scholar
  15. 15.
    Keys, K., Hyun, Y., Luckie, M., Claffy, K.: Internet-scale IPv4 alias resolution with MIDAR. IEEE/ACM Trans. Netw. 21(2), 383–399 (2012)CrossRefGoogle Scholar
  16. 16.
    Luckie, M.: Scamper: a scalable and extensible packet prober for active measurement of the Internet. In: ACM IMC (2010)Google Scholar
  17. 17.
    Luckie, M., Dhamdhere, A., Clark, D., Huffaker, B., Claffy, K.C.: Challenges in inferring Internet interdomain congestion. In: ACM IMC (2014)Google Scholar
  18. 18.
    Luckie, M., Dhamdhere, A., Huffaker, B., Clark, D., Claffy, K.C.: bdrmap: inference of borders between IP networks. In: ACM IMC (2016)Google Scholar
  19. 19.
    Luckie, M., Huffaker, B., Dhamdhere, A., Giotsas, V., Claffy, K.C.: AS relationships, customer cones, and validation. In: Proceedings of ACM IMC (2013)Google Scholar
  20. 20.
    Packet Clearing House: Full exchange point dataset (2017).
  21. 21.
    PeeringDB (2017).
  22. 22.
    Plissonneau, L., Biersack, E., Juluri, P.: Analyzing the impact of YouTube delivery policies on user experience. In: ITC (2012)Google Scholar
  23. 23.
    Torres, R., Finamore, A., Kim, J.R., Mellia, M., Munafo, M.M., Rao, S.: Dissecting video server selection strategies in the YouTube CDN. In: IEEE ICDCS (2011)Google Scholar
  24. 24.
    Windisch, G.: Analysis of the YouTube server selection behavior observed in a large German ISP network. In: EUNICE (2014)Google Scholar
  25. 25.
    YouTube: Youtube for press. Accessed 10 Oct 2017

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CAIDAUCSDSan DiegoUSA
  2. 2.Technische Universität MünchenMunichGermany

Personalised recommendations