Advertisement

Lung Cancer

  • Katalin Dobra
  • Anders Hjerpe
Chapter

Abstract

Metastatic lung adenocarcinoma is commonly found in serous effusions and, in a subset of patients, is one of the first materials available for diagnosis and molecular characterization. With increased understanding of the molecular mechanism involved in the malignant process and discovery of a plethora of molecular detection methods, including next-generation sequencing, a very accurate prediction of response for targeted therapy is possible with this minimally invasive method. As cells obtained from malignant effusions are not exposed to aldehyde fixatives, these cells can be even better suited for the genomic analyses that are increasingly requested as basis for personalized targeted therapies. The chapter describes our current knowledge of genetic and epigenetic changes in lung cancer, the present classification of lung cancers and how to reach a conclusive diagnosis by effusion cytology integrating ancillary analyses, and molecular approaches and how this may influence the choice of therapy.

References

  1. 1.
    Jemal A, Thun MJ, Ries LA, Howe HL, Weir HK, Center MM, Ward E, Wu XC, Eheman C, Anderson R, et al. Annual report to the nation on the status of cancer, 1975-2005, featuring trends in lung cancer, tobacco use, and tobacco control. J Natl Cancer Inst. 2008;100(23):1672–94.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ. Cancer statistics, 2006. CA Cancer J Clin. 2006;56(2):106–30.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Porcel JM, Esquerda A, Vives M, Bielsa S. Etiology of pleural effusions: analysis of more than 3,000 consecutive thoracenteses. Arch Bronconeumol. 2014;50(5):161–5.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Porcel JM, Gasol A, Bielsa S, Civit C, Light RW, Salud A. Clinical features and survival of lung cancer patients with pleural effusions. Respirology. 2015;20(4):654–9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Travis WDBE, Müller-Hermelink HK, Harris CC. Pathology and genetics of tumours of the lung, pleura, thymus and heart. Lyon: IARC Press; 2004.Google Scholar
  8. 8.
    Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, Rami-Porta R, Postmus PE, Rusch V, Sobin L. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol. 2007;2(8):706–14.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Mukhopadhyay S, Katzenstein AL. Subclassification of non-small cell lung carcinomas lacking morphologic differentiation on biopsy specimens: Utility of an immunohistochemical panel containing TTF-1, napsin A, p63, and CK5/6. Am J Surg Pathol. 2011;35(1):15–25.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    McDowell EM, McLaughlin JS, Merenyl DK, Kieffer RF, Harris CC, Trump BF. The respiratory epithelium. V. Histogenesis of lung carcinomas in the human. J Natl Cancer Inst. 1978;61(2):587–606.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst. 1999;91(14):1194–210.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Yokota J, Shiraishi K, Kohno T. Genetic basis for susceptibility to lung cancer recent progress and future directions. Adv Cancer Res. 2010;109:51–72.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D, Mukeria A, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452(7187):633–7.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Wistuba II, Behrens C, Virmani AK, Mele G, Milchgrub S, Girard L, Fondon JW III, Garner HR, McKay B, Latif F, et al. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res. 2000;60(7):1949–60.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, Lin WM, Province MA, Kraja A, Johnson LA, et al. Characterizing the cancer genome in lung adenocarcinoma. Nature. 2007;450(7171):893–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kendall J, Liu Q, Bakleh A, Krasnitz A, Nguyen KC, Lakshmi B, Gerald WL, Powers S, Mu D. Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proc Natl Acad Sci U S A. 2007;104(42):16663–8.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Tanaka H, Yanagisawa K, Shinjo K, Taguchi A, Maeno K, Tomida S, Shimada Y, Osada H, Kosaka T, Matsubara H, et al. Lineage-specific dependency of lung adenocarcinomas on the lung development regulator TTF-1. Cancer Res. 2007;67(13):6007–11.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Nymark P, Wikman H, Ruosaari S, Hollmen J, Vanhala E, Karjalainen A, Anttila S, Knuutila S. Identification of specific gene copy number changes in asbestos-related lung cancer. Cancer Res. 2006;66(11):5737–43.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kettunen E, Aavikko M, Nymark P, Ruosaari S, Wikman H, Vanhala E, Salmenkivi K, Pirinen R, Karjalainen A, Kuosma E, et al. DNA copy number loss and allelic imbalance at 2p16 in lung cancer associated with asbestos exposure. Br J Cancer. 2009;100(8):1336–42.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Nymark P, Kettunen E, Aavikko M, Ruosaari S, Kuosma E, Vanhala E, Salmenkivi K, Pirinen R, Karjalainen A, Knuutila S, et al. Molecular alterations at 9q33.1 and polyploidy in asbestos-related lung cancer. Clin Cancer Res. 2009;15(2):468–75.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Mutsaers SE. The mesothelial cell. Int J Biochem Cell Biol. 2004;36(1):9–16.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Mutsaers SE, Wilkosz S. Structure and function of mesothelial cells. Cancer Treat Res. 2007;134:1–19.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Graves EE, Vilalta M, Cecic IK, Erler JT, Tran PT, Felsher D, Sayles L, Sweet-Cordero A, Le QT, Giaccia AJ. Hypoxia in models of lung cancer: implications for targeted therapeutics. Clin Cancer Res. 2010;16(19):4843–52.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Graves EE, Maity A, Le QT. The tumor microenvironment in non-small-cell lung cancer. Semin Radiat Oncol. 2010;20(3):156–63.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kassis J, Klominek J, Kohn EC. Tumor microenvironment: what can effusions teach us? Diagn Cytopathol. 2005;33(5):316–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Kohn EC, Travers LA, Kassis J, Broome U, Klominek J. Malignant effusions are sources of fibronectin and other promigratory and proinvasive components. Diagn Cytopathol. 2005;33(5):300–8.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Quaranta V, Giannelli G. Cancer invasion: watch your neighbourhood. Tumori. 2003;89(4):343–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Jantz MA, Antony VB. Pathophysiology of the pleura. Respiration. 2008;75(2):121–33.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Lynch CC, Matrisian LM. Matrix metalloproteinases in tumor-host cell communication. Differentiation. 2002;70(9-10):561–73.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88(2):277–85.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Gulyas M, Dobra K, Hjerpe A. Expression of genes coding for proteoglycans and Wilms’ tumour susceptibility gene 1 (WT1) by variously differentiated benign human mesothelial cells. Differentiation. 1999;65(2):89–96.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Sharma RK, Mohammed KA, Nasreen N, Hardwick J, Van Horn RD, Ramirez-Icaza C, Antony VB. Defensive role of pleural mesothelial cell sialomucins in tumor metastasis. Chest. 2003;124(2):682–7.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Ponta H, Wainwright D, Herrlich P. The CD44 protein family. Int J Biochem Cell Biol. 1998;30(3):299–305.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Lin CC, Chen LC, Tseng VS, Yan JJ, Lai WW, Su WP, Lin CH, Huang CY, Su WC. Malignant pleural effusion cells show aberrant glucose metabolism gene expression. Eur Respir J. 2011;37(6):1453–65.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Grove CS, Lee YC. Vascular endothelial growth factor: the key mediator in pleural effusion formation. Curr Opin Pulm Med. 2002;8(4):294–301.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Cheng D, Lee YC, Rogers JT, Perkett EA, Moyers JP, Rodriguez RM, Light RW. Vascular endothelial growth factor level correlates with transforming growth factor-beta isoform levels in pleural effusions. Chest. 2000;118(6):1747–53.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Lee YC, Lane KB. The many faces of transforming growth factor-beta in pleural diseases. Curr Opin Pulm Med. 2001;7(4):173–9.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Gary Lee YC, Melkerneker D, Thompson PJ, Light RW, Lane KB. Transforming growth factor beta induces vascular endothelial growth factor elaboration from pleural mesothelial cells in vivo and in vitro. Am J Respir Crit Care Med. 2002;165(1):88–94.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kishiro I, Kato S, Fuse D, Yoshida T, Machida S, Kaneko N. Clinical significance of vascular endothelial growth factor in patients with primary lung cancer. Respirology. 2002;7(2):93–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Yanagawa H, Takeuchi E, Suzuki Y, Ohmoto Y, Bando H, Sone S. Vascular endothelial growth factor in malignant pleural effusion associated with lung cancer. Cancer Immunol Immunother. 1999;48(7):396–400.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Thickett DR, Armstrong L, Millar AB. Vascular endothelial growth factor (VEGF) in inflammatory and malignant pleural effusions. Thorax. 1999;54(8):707–10.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ishimoto O, Saijo Y, Narumi K, Kimura Y, Ebina M, Matsubara N, Asou N, Nakai Y, Nukiwa T. High level of vascular endothelial growth factor in hemorrhagic pleural effusion of cancer. Oncology. 2002;63(1):70–5.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Tomimoto H, Yano S, Muguruma H, Kakiuchi S, Sone S. Levels of soluble vascular endothelial growth factor receptor 1 are elevated in the exudative pleural effusions. J Med Invest. 2007;54(1-2):146–53.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Safi A, Sadmi M, Martinet N, Menard O, Vaillant P, Gallati H, Hosang M, Martinet Y. Presence of elevated levels of platelet-derived growth factor (PDGF) in lung adenocarcinoma pleural effusions. Chest. 1992;102(1):204–7.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Xirouchaki N, Tzanakis N, Bouros D, Kyriakou D, Karkavitsas N, Alexandrakis M, Siafakas NM. Diagnostic value of interleukin-1alpha, interleukin-6, and tumor necrosis factor in pleural effusions. Chest. 2002;121(3):815–20.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Aoe K, Hiraki A, Murakami T, Murakami K, Makihata K, Takao K, Eda R, Maeda T, Sugi K, Darzynkiewicz Z, et al. Relative abundance and patterns of correlation among six cytokines in pleural fluid measured by cytometric bead array. Int J Mol Med. 2003;12(2):193–8.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Chen YM, Yang WK, Whang-Peng J, Tsai CM, Perng RP. An analysis of cytokine status in the serum and effusions of patients with tuberculous and lung cancer. Lung Cancer. 2001;31(1):25–30.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kotyza J, Havel D, Vrzalova J, Kulda V, Pesek M. Diagnostic and prognostic significance of inflammatory markers in lung cancer-associated pleural effusions. Int J Biol Markers. 2010;25(1):12–20.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Pao W, Iafrate AJ, Su Z. Genetically informed lung cancer medicine. J Pathol. 2011;223(2):230–40.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Bronte G, Rizzo S, La Paglia L, Adamo V, Siragusa S, Ficorella C, Santini D, Bazan V, Colucci G, Gebbia N, et al. Driver mutations and differential sensitivity to targeted therapies: a new approach to the treatment of lung adenocarcinoma. Cancer Treat Rev. 2010;36(Suppl 3):S21–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Mitsudomi T, Yatabe Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci. 2007;98(12):1817–24.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Ladanyi M, Pao W. Lung adenocarcinoma: guiding EGFR-targeted therapy and beyond. Mod Pathol. 2008;21(Suppl 2):S16–22.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Shigematsu H, Gazdar AF. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer. 2006;118(2):257–62.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Kumar A, Petri ET, Halmos B, Boggon TJ. Structure and clinical relevance of the epidermal growth factor receptor in human cancer. J Clin Oncol. 2008;26(10):1742–51.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wu SG, Gow CH, Yu CJ, Chang YL, Yang CH, Hsu YC, Shih JY, Lee YC, Yang PC. Frequent epidermal growth factor receptor gene mutations in malignant pleural effusion of lung adenocarcinoma. Eur Respir J. 2008;32(4):924–30.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Zou J, Bella AE, Chen Z, Han X, Su C, Lei Y, Luo H. Frequency of EGFR mutations in lung adenocarcinoma with malignant pleural effusion: Implication of cancer biological behaviour regulated by EGFR mutation. J Int Med Res. 2014;42(5):1110–7.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Rodriguez EF, Shabihkhani M, Carter J, Maleki Z. Molecular alterations in patients with pulmonary adenocarcinoma presenting with malignant pleural effusion at the first diagnosis. Acta Cytol. 2017;61(3):214–22.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Hung MS, Lin CK, Leu SW, Wu MY, Tsai YH, Yang CT. Epidermal growth factor receptor mutations in cells from non-small cell lung cancer malignant pleural effusions. Chang Gung Med J. 2006;29(4):373–9.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Soh J, Toyooka S, Aoe K, Asano H, Ichihara S, Katayama H, Hiraki A, Kiura K, Aoe M, Sano Y, et al. Usefulness of EGFR mutation screening in pleural fluid to predict the clinical outcome of gefitinib treated patients with lung cancer. Int J Cancer. 2006;119(10):2353–8.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Soh J, Toyooka S, Ichihara S, Suehisa H, Kobayashi N, Ito S, Yamane M, Aoe M, Sano Y, Kiura K, et al. EGFR mutation status in pleural fluid predicts tumor responsiveness and resistance to gefitinib. Lung Cancer. 2007;56(3):445–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Jian G, Songwen Z, Ling Z, Qinfang D, Jie Z, Liang T, Caicun Z. Prediction of epidermal growth factor receptor mutations in the plasma/pleural effusion to efficacy of gefitinib treatment in advanced non-small cell lung cancer. J Cancer Res Clin Oncol. 2010;136(9):1341–7.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Soung YH, Lee JW, Kim SY, Seo SH, Park WS, Nam SW, Song SY, Han JH, Park CK, Lee JY, et al. Mutational analysis of EGFR and K-RAS genes in lung adenocarcinomas. Virchows Arch. 2005;446(5):483–8.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M, Zakowski MF, Heelan RT, Kris MG, Varmus HE. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2005;2(1):e17.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Zhu CQ, Ding K, Strumpf D, Weir BA, Meyerson M, Pennell N, Thomas RK, Naoki K, Ladd-Acosta C, Liu N, et al. Prognostic and predictive gene signature for adjuvant chemotherapy in resected non-small-cell lung cancer. J Clin Oncol. 2010;28(29):4417–24.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, Kim SY, Wardwell L, Tamayo P, Gat-Viks I, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009;41(11):1238–42.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Wagner PL, Perner S, Rickman DS, LaFargue CJ, Kitabayashi N, Johnstone SF, Weir BA, Meyerson M, Altorki NK, Rubin MA. In situ evidence of KRAS amplification and association with increased p21 levels in non-small cell lung carcinoma. Am J Clin Pathol. 2009;132(4):500–5.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Ramos AH, Dutt A, Mermel C, Perner S, Cho J, Lafargue CJ, Johnson LA, Stiedl AC, Tanaka KE, Bass AJ, et al. Amplification of chromosomal segment 4q12 in non-small cell lung cancer. Cancer Biol Ther. 2009;8(21):2042–50.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Sos ML, Michel K, Zander T, Weiss J, Frommolt P, Peifer M, Li D, Ullrich R, Koker M, Fischer F, et al. Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. J Clin Invest. 2009;119(6):1727–40.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Sos ML, Koker M, Weir BA, Heynck S, Rabinovsky R, Zander T, Seeger JM, Weiss J, Fischer F, Frommolt P, et al. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res. 2009;69(8):3256–61.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Barletta JA, Perner S, Iafrate AJ, Yeap BY, Weir BA, Johnson LA, Johnson BE, Meyerson M, Rubin MA, Travis WD, et al. Clinical significance of TTF-1 protein expression and TTF-1 gene amplification in lung adenocarcinoma. J Cell Mol Med. 2009;13(8B):1977–86.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455(7216):1069–75.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Perner S, Wagner PL, Soltermann A, LaFargue C, Tischler V, Weir BA, Weder W, Meyerson M, Giordano TJ, Moch H, et al. TTF1 expression in non-small cell lung carcinoma: association with TTF1 gene amplification and improved survival. J Pathol. 2009;217(1):65–72.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Shedden K, Taylor JM, Enkemann SA, Tsao MS, Yeatman TJ, Gerald WL, Eschrich S, Jurisica I, Giordano TJ, Misek DE, et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med. 2008;14(8):822–7.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Minami Y, Shimamura T, Shah K, LaFramboise T, Glatt KA, Liniker E, Borgman CL, Haringsma HJ, Feng W, Weir BA, et al. The major lung cancer-derived mutants of ERBB2 are oncogenic and are associated with sensitivity to the irreversible EGFR/ERBB2 inhibitor HKI-272. Oncogene. 2007;26(34):5023–7.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Thomas RK, Weir B, Meyerson M. Genomic approaches to lung cancer. Clin Cancer Res. 2006;12(14 Pt 2):4384s–91s.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Zhao X, Weir BA, LaFramboise T, Lin M, Beroukhim R, Garraway L, Beheshti J, Lee JC, Naoki K, Richards WG, et al. Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res. 2005;65(13):5561–70.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Suda K, Tomizawa K, Mitsudomi T. Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation. Cancer Metastasis Rev. 2010;29(1):49–60.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Carter J, Miller JA, Feller-Kopman D, Ettinger D, Sidransky D, Maleki Z. Molecular profiling of malignant pleural effusion in metastatic non-small-cell lung carcinoma. The effect of preanalytical factors. Ann Am Thorac Soc. 2017;14(7):1169–76.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Jordan EJ, Kim HR, Arcila ME, Barron D, Chakravarty D, Gao J, Chang MT, Ni A, Kundra R, Jonsson P, et al. Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies. Cancer Discov. 2017;7(6):596–609.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–6.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Inamura K, Takeuchi K, Togashi Y, Nomura K, Ninomiya H, Okui M, Satoh Y, Okumura S, Nakagawa K, Soda M, et al. EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers. J Thorac Oncol. 2008;3(1):13–7.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Sasaki T, Rodig SJ, Chirieac LR, Janne PA. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer. 2010;46(10):1773–80.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS, Solomon B, Stubbs H, Admane S, McDermott U, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009;27(26):4247–53.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Zhang X, Zhang S, Yang X, Yang J, Zhou Q, Yin L, An S, Lin J, Chen S, Xie Z, et al. Fusion of EML4 and ALK is associated with development of lung adenocarcinomas lacking EGFR and KRAS mutations and is correlated with ALK expression. Mol Cancer. 2010;9:188.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Zhong J, Li X, Bai H, Zhao J, Wang Z, Duan J, An T, Wu M, Wang Y, Wang S, et al. Malignant pleural effusion cell blocks are substitutes for tissue in EML4-ALK rearrangement detection in patients with advanced non-small-cell lung cancer. Cytopathology. 2016;27(6):433–43.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Zhou J, Yao H, Zhao J, Zhang S, You Q, Sun K, Zou Y, Zhou C. Cell block samples from malignant pleural effusion might be valid alternative samples for anaplastic lymphoma kinase detection in patients with advanced non-small-cell lung cancer. Histopathology. 2015;66(7):949–54.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Wang W, Tang Y, Li J, Jiang L, Jiang Y, Su X. Detection of ALK rearrangements in malignant pleural effusion cell blocks from patients with advanced non-small cell lung cancer: a comparison of Ventana immunohistochemistry and fluorescence in situ hybridization. Cancer Cytopathol. 2015;123(2):117–22.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Savic S, Bode B, Diebold J, Tosoni I, Barascud A, Baschiera B, Grilli B, Herzog M, Obermann E, Bubendorf L. Detection of ALK-positive non-small-cell lung cancers on cytological specimens: high accuracy of immunocytochemistry with the 5A4 clone. J Thorac Oncol. 2013;8(8):1004–11.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Liu L, Zhan P, Zhou X, Song Y, Yu L, Wang J. Detection of EML4-ALK in lung adenocarcinoma using pleural effusion with FISH, IHC, and RT-PCR methods. PLoS One. 2015;10(3):e0117032.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Yamamoto G, Kikuchi M, Kobayashi S, Arai Y, Fujiyoshi K, Wakatsuki T, Kakuta M, Yamane Y, Iijima Y, Mizutani H, et al. Routine genetic testing of lung cancer specimens derived from surgery, bronchoscopy and fluid aspiration by next generation sequencing. Int J Oncol. 2017;50(5):1579–89.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Ali SM, Hensing T, Schrock AB, Allen J, Sanford E, Gowen K, Kulkarni A, He J, Suh JH, Lipson D, et al. Comprehensive genomic profiling identifies a subset of Crizotinib-responsive ALK-rearranged non-small cell lung cancer not detected by fluorescence in situ hybridization. Oncologist. 2016;21(6):762–70.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, Massion PP, Siwak-Tapp C, Gonzalez A, Fang R, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30(8):863–70.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Rossi G, Ragazzi M, Tamagnini I, Mengoli MC, Vincenzi G, Barbieri F, Piccioli S, Bisagni A, Vavala T, Righi L, et al. Does immunohistochemistry represent a robust alternative technique in determining drugable predictive gene alterations in non-small cell lung cancer? Curr Drug Targets. 2017;18(1):13–26.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Drilon A, Somwar R, Wagner JP, Vellore NA, Eide CA, Zabriskie MS, Arcila ME, Hechtman JF, Wang L, Smith RS, et al. A novel Crizotinib-resistant solvent-front mutation responsive to Cabozantinib therapy in a patient with ROS1-rearranged lung cancer. Clin Cancer Res. 2016;22(10):2351–8.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Wang R, Hu H, Pan Y, Li Y, Ye T, Li C, Luo X, Wang L, Li H, Zhang Y, et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol. 2012;30(35):4352–9.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Drilon A, Rekhtman N, Arcila M, Wang L, Ni A, Albano M, Van Voorthuysen M, Somwar R, Smith RS, Montecalvo J, et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol. 2016;17(12):1653–60.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Sekido Y, Fong KM, Minna JD. Progress in understanding the molecular pathogenesis of human lung cancer. Biochim Biophys Acta. 1998;1378(1):F21–59.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Salgia R, Skarin AT. Molecular abnormalities in lung cancer. J Clin Oncol. 1998;16(3):1207–17.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Tong JH, Yeung SF, Chan AW, Chung LY, Chau SL, Lung RW, Tong CY, Chow C, Tin EK, Yu YH, et al. MET amplification and Exon 14 splice site mutation define unique molecular subgroups of non-small cell lung carcinoma with poor prognosis. Clin Cancer Res. 2016;22(12):3048–56.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Cassidy RJ, Zhang X, Patel PR, Shelton JW, Escott CE, Sica GL, Rossi MR, Hill CE, Steuer CE, Pillai RN, et al. Next-generation sequencing and clinical outcomes of patients with lung adenocarcinoma treated with stereotactic body radiotherapy. Cancer. 2017;123(19):3681–90.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Paik PK, Drilon A, Fan PD, Yu H, Rekhtman N, Ginsberg MS, Borsu L, Schultz N, Berger MF, Rudin CM, et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 2015;5(8):842–9.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Cortot AB, Kherrouche Z, Descarpentries C, Wislez M, Baldacci S, Furlan A, Tulasne D. Exon 14 deleted MET receptor as a new biomarker and target in cancers. J Natl Cancer Inst. 2017;109(5).Google Scholar
  104. 104.
    Kitamura H, Yazawa T, Sato H, Okudela K, Shimoyamada H. Small cell lung cancer: significance of RB alterations and TTF-1 expression in its carcinogenesis, phenotype, and biology. Endocr Pathol. 2009;20(2):101–7.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Wistuba II, Gazdar AF, Minna JD. Molecular genetics of small cell lung carcinoma. Semin Oncol. 2001;28(2 Suppl 4):3–13.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    He X, He L, Hannon GJ. The guardian's little helper: microRNAs in the p53 tumor suppressor network. Cancer Res. 2007;67(23):11099–101.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    He L, He X, Lowe SW, Hannon GJ. microRNAs join the p53 network--another piece in the tumour-suppression puzzle. Nat Rev Cancer. 2007;7(11):819–22.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447(7148):1130–4.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ. RAS is regulated by the let-7 microRNA family. Cell. 2005;120(5):635–47.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999–3004.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Calin GA, Croce CM. MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene. 2006;25(46):6202–10.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9(3):189–98.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer. 2009;10(1):42–6.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Lin PY, Yu SL, Yang PC. MicroRNA in lung cancer. Br J Cancer. 2010;103(8):1144–8.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Heneghan HM, Miller N, Kerin MJ. MiRNAs as biomarkers and therapeutic targets in cancer. Curr Opin Pharmacol. 2010;10(5):543–50.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Holloway AJ, Diyagama DS, Opeskin K, Creaney J, Robinson BW, Lake RA, Bowtell DD. A molecular diagnostic test for distinguishing lung adenocarcinoma from malignant mesothelioma using cells collected from pleural effusions. Clin Cancer Res. 2006;12(17):5129–35.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, Joshi MB, Harpole D, Lancaster JM, Berchuck A, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439(7074):353–7.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, Ladanyi M, Gerald WL, Massague J. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 2009;138(1):51–62.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Brock MV, Hooker CM, Yung R, Guo M, Han Y, Ames SE, Chang D, Yang SC, Mason D, Sussman M, et al. Can we improve the cytologic examination of malignant pleural effusions using molecular analysis? Ann Thorac Surg. 2005;80(4):1241–7.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Ng CS, Zhang J, Wan S, Lee TW, Arifi AA, Mok T, Lo DY, Yim AP. Tumor p16M is a possible marker of advanced stage in non-small cell lung cancer. J Surg Oncol. 2002;79(2):101–6.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Gui S, Liu H, Zhang L, Zuo L, Zhou Q, Fei G, Wang Y. Clinical significance of the detection of the homozygous deletion of P16 gene in malignant pleural effusion. Intern Med. 2007;46(15):1161–6.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Toyooka S, Toyooka KO, Maruyama R, Virmani AK, Girard L, Miyajima K, Harada K, Ariyoshi Y, Takahashi T, Sugio K, et al. DNA methylation profiles of lung tumors. Mol Cancer Ther. 2001;1(1):61–7.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Katayama H, Hiraki A, Aoe K, Fujiwara K, Matsuo K, Maeda T, Murakami T, Toyooka S, Sugi K, Ueoka H, et al. Aberrant promoter methylation in pleural fluid DNA for diagnosis of malignant pleural effusion. Int J Cancer. 2007;120(10):2191–5.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Toyooka S, Tokumo M, Shigematsu H, Matsuo K, Asano H, Tomii K, Ichihara S, Suzuki M, Aoe M, Date H, et al. Mutational and epigenetic evidence for independent pathways for lung adenocarcinomas arising in smokers and never smokers. Cancer Res. 2006;66(3):1371–5.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Suzuki M, Shigematsu H, Iizasa T, Hiroshima K, Nakatani Y, Minna JD, Gazdar AF, Fujisawa T. Exclusive mutation in epidermal growth factor receptor gene, HER-2, and KRAS, and synchronous methylation of nonsmall cell lung cancer. Cancer. 2006;106(10):2200–7.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Schroeder JA, Thompson MC, Gardner MM, Gendler SJ. Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J Biol Chem. 2001;276(16):13057–64.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Li Y, Ren J, Yu W, Li Q, Kuwahara H, Yin L, Carraway KL III, Kufe D. The epidermal growth factor receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and beta-catenin. J Biol Chem. 2001;276(38):35239–42.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Pao W, Kris MG, Iafrate AJ, Ladanyi M, Janne PA, Wistuba II, Miake-Lye R, Herbst RS, Carbone DP, Johnson BE, et al. Integration of molecular profiling into the lung cancer clinic. Clin Cancer Res. 2009;15(17):5317–22.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Jacot W, Lhermitte L, Dossat N, Pujol JL, Molinari N, Daures JP, Maudelonde T, Mange A, Solassol J. Serum proteomic profiling of lung cancer in high-risk groups and determination of clinical outcomes. J Thorac Oncol. 2008;3(8):840–50.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Tyan YC, Wu HY, Lai WW, Su WC, Liao PC. Proteomic profiling of human pleural effusion using two-dimensional nano liquid chromatography tandem mass spectrometry. J Proteome Res. 2005;4(4):1274–86.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Tyan YC, Wu HY, Su WC, Chen PW, Liao PC. Proteomic analysis of human pleural effusion. Proteomics. 2005;5(4):1062–74.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Kim JH, Choi YD, Lee JS, Lee JH, Nam JH, Choi C. Utility of thyroid transcription factor-1 and CDX-2 in determining the primary site of metastatic adenocarcinomas in serous effusions. Acta Cytol. 2010;54(3):277–82.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Dejmek A, Naucler P, Smedjeback A, Kato H, Maeda M, Yashima K, Maeda J, Hirano T. Napsin A (TA02) is a useful alternative to thyroid transcription factor-1 (TTF-1) for the identification of pulmonary adenocarcinoma cells in pleural effusions. Diagn Cytopathol. 2007;35(8):493–7.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Flores-Staino C, Darai-Ramqvist E, Dobra K, Hjerpe A. Adaptation of a commercial fluorescent in situ hybridization test to the diagnosis of malignant cells in effusions. Lung Cancer. 2010;68(1):39–43.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Fiegl M, Massoner A, Haun M, Sturm W, Kaufmann H, Hack R, Krugmann J, Fritzer-Szekeres M, Grunewald K, Gastl G. Sensitive detection of tumour cells in effusions by combining cytology and fluorescence in situ hybridisation (FISH). Br J Cancer. 2004;91(3):558–63.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Voss JS, Kipp BR, Halling KC, Henry MR, Jett JR, Clayton AC, Rickman OB. Fluorescence in situ hybridization testing algorithm improves lung cancer detection in bronchial brushing specimens. Am J Respir Crit Care Med. 2010;181(5):478–85.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Akamatsu H, Koh Y, Kenmotsu H, Naito T, Serizawa M, Kimura M, Mori K, Imai H, Ono A, Shukuya T, et al. Multiplexed molecular profiling of lung cancer using pleural effusion. J Thorac Oncol. 2014;9(7):1048–52.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Kruglyak KM, Lin E, Ong FS. Next-generation sequencing and applications to the diagnosis and treatment of lung cancer. Adv Exp Med Biol. 2016;890:123–36.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Zugazagoitia J, Rueda D, Carrizo N, Enguita AB, Gomez-Sanchez D, Diaz-Serrano A, Jimenez E, Merida A, Calero R, Lujan R et al. Prospective clinical integration of an amplicon-based next-generation sequencing method to select advanced non-small-cell lung cancer patients for genotype-tailored treatments. Clin Lung Cancer. 2017.Google Scholar
  145. 145.
    Antony VB. Pathogenesis of malignant pleural effusions and talc pleurodesis. Pneumologie. 1999;53(10):493–8.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Nasreen N, Mohammed KA, Brown S, Su Y, Sriram PS, Moudgil B, Loddenkemper R, Antony VB. Talc mediates angiostasis in malignant pleural effusions via endostatin induction. Eur Respir J. 2007;29(4):761–9.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Grilli R, Oxman AD, Julian JA. Chemotherapy for advanced non-small-cell lung cancer: how much benefit is enough? J Clin Oncol. 1993;11(10):1866–72.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Souquet PJ, Chauvin F, Boissel JP, Cellerino R, Cormier Y, Ganz PA, Kaasa S, Pater JL, Quoix E, Rapp E, et al. Polychemotherapy in advanced non small cell lung cancer: a meta-analysis. Lancet. 1993;342(8862):19–21.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Carbone DP, Minna JD. Chemotherapy for non-small cell lung cancer. BMJ. 1995;311(7010):889–90.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    D’Addario G, Pintilie M, Leighl NB, Feld R, Cerny T, Shepherd FA. Platinum-based versus non-platinum-based chemotherapy in advanced non-small-cell lung cancer: a meta-analysis of the published literature. J Clin Oncol. 2005;23(13):2926–36.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Klastersky J, Sculier JP, Lacroix H, Dabouis G, Bureau G, Libert P, Richez M, Ravez P, Vandermoten G, Thiriaux J, et al. A randomized study comparing cisplatin or carboplatin with etoposide in patients with advanced non-small-cell lung cancer: European Organization for Research and Treatment of Cancer Protocol 07861. J Clin Oncol. 1990;8(9):1556–62.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Kroep JR, Giaccone G, Voorn DA, Smit EF, Beijnen JH, Rosing H, van Moorsel CJ, van Groeningen CJ, Postmus PE, Pinedo HM, et al. Gemcitabine and paclitaxel: pharmacokinetic and pharmacodynamic interactions in patients with non-small-cell lung cancer. J Clin Oncol. 1999;17(7):2190–7.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Mori K, Kobayashi H, Kamiyama Y, Kano Y, Kodama T. A phase II trial of weekly chemotherapy with paclitaxel plus gemcitabine as a first-line treatment in advanced non-small-cell lung cancer. Cancer Chemother Pharmacol. 2009;64(1):73–8.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Li C, Sun Y, Pan Y, Wang Q, Yang S, Chen H. Gemcitabine plus paclitaxel versus carboplatin plus either gemcitabine or paclitaxel in advanced non-small-cell lung cancer: a literature-based meta-analysis. Lung. 2010;188(5):359–64.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Azzoli CG, Giaccone G, Temin S. American Society of Clinical Oncology Clinical Practice Guideline Update on chemotherapy for Stage IV non-small-cell lung cancer. J Oncol Pract. 2010;6(1):39–43.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Davies AM, Lara PN, Lau DH, Gandara DR. Treatment of extensive small cell lung cancer. Hematol Oncol Clin North Am. 2004;18(2):373–85.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Socinski MA, Weissman C, Hart LL, Beck JT, Choksi JK, Hanson JP, Prager D, Monberg MJ, Ye Z, Obasaju CK. Randomized phase II trial of pemetrexed combined with either cisplatin or carboplatin in untreated extensive-stage small-cell lung cancer. J Clin Oncol. 2006;24(30):4840–7.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Chiappori AA, Rocha-Lima CM. New agents in the treatment of small-cell lung cancer: focus on gemcitabine. Clin Lung Cancer. 2003;4(Suppl 2):S56–63.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    McDermott U, Settleman J. Personalized cancer therapy with selective kinase inhibitors: an emerging paradigm in medical oncology. J Clin Oncol. 2009;27(33):5650–9.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Besse B, Ropert S, Soria JC. Targeted therapies in lung cancer. Ann Oncol. 2007;18(Suppl 9):ix135–42.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A. 2004;101(36):13306–11.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Pao W, Miller VA, Kris MG. ‘Targeting’ the epidermal growth factor receptor tyrosine kinase with gefitinib (Iressa) in non-small cell lung cancer (NSCLC). Semin Cancer Biol. 2004;14(1):33–40.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Janne PA. Challenges of detecting EGFR T790M in gefitinib/erlotinib-resistant tumours. Lung Cancer. 2008;60(Suppl 2):S3–9.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Jin Y, Shao Y, Shi X, Lou G, Zhang Y, Wu X, Tong X, Yu X. Mutational profiling of non-small-cell lung cancer patients resistant to first-generation EGFR tyrosine kinase inhibitors using next generation sequencing. Oncotarget. 2016;7(38):61755–63.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Gerber DE, Minna JD. ALK inhibition for non-small cell lung cancer: from discovery to therapy in record time. Cancer Cell. 2010;18(6):548–51.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Gandini S, Massi D, Mandala M. PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: a systematic review and meta-analysis. Crit Rev Oncol/Hematol. 2016;100:88–98.CrossRefGoogle Scholar
  169. 169.
    Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Grigg C, Rizvi NA. PD-L1 biomarker testing for non-small cell lung cancer: truth or fiction? J Immunother Cancer. 2016;4:48.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Subramanian J, Morgensztern D, Govindan R. Vascular endothelial growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin Lung Cancer. 2010;11(5):311–9.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Kennedy B, Gargoum F, Bystricky B, Curran DR, O'Connor TM. Novel agents in the management of lung cancer. Curr Med Chem. 2010;17(35):4291–325.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Psallidas I, Karabela SP, Moschos C, Sherrill TP, Kollintza A, Magkouta S, Theodoropoulou P, Roussos C, Blackwell TS, Kalomenidis I, et al. Specific effects of bortezomib against experimental malignant pleural effusion: a preclinical study. Mol Cancer. 2010;9:56.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Russo A, Bronte G, Fulfaro F, Cicero G, Adamo V, Gebbia N, Rizzo S. Bortezomib: a new pro-apoptotic agent in cancer treatment. Curr Cancer Drug Targets. 2010;10(1):55–67.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Langer CJ, Besse B, Gualberto A, Brambilla E, Soria JC. The evolving role of histology in the management of advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(36):5311–20.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Schrag D, Garewal HS, Burstein HJ, Samson DJ, Von Hoff DD, Somerfield MR. American Society of Clinical Oncology Technology Assessment: chemotherapy sensitivity and resistance assays. J Clin Oncol. 2004;22(17):3631–8.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Samson DJ, Seidenfeld J, Ziegler K, Aronson N. Chemotherapy sensitivity and resistance assays: a systematic review. J Clin Oncol. 2004;22(17):3618–30.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Roscilli G, De Vitis C, Ferrara FF, Noto A, Cherubini E, Ricci A, Mariotta S, Giarnieri E, Giovagnoli MR, Torrisi MR, et al. Human lung adenocarcinoma cell cultures derived from malignant pleural effusions as model system to predict patients chemosensitivity. J Transl Med. 2016;14:61.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Otvos R, Szulkin A, Hillerdal CO, Celep A, Yousef-Fadhel E, Skribek H, Hjerpe A, Szekely L, Dobra K. Drug sensitivity profiling and molecular characteristics of cells from pleural effusions of patients with lung adenocarcinoma. Genes Cancer. 2015;6(3-4):119–28.PubMedPubMedCentralGoogle Scholar
  181. 181.
    Gulyas M, Kaposi AD, Elek G, Szollar LG, Hjerpe A. Value of carcinoembryonic antigen (CEA) and cholesterol assays of ascitic fluid in cases of inconclusive cytology. J Clin Pathol. 2001;54(11):831–5.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Radjenovic-Petkovic T, Pejcic T, Nastasijevic-Borovac D, Rancic M, Radojkovic D, Radojkovic M, Djordjevic I. Diagnostic value of CEA in pleural fluid for differential diagnosis of benign and malign pleural effusion. Med Arh. 2009;63(3):141–2.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Huang WW, Tsao SM, Lai CL, Su CC, Tseng CE. Diagnostic value of Her-2/neu, Cyfra 21-1, and carcinoembryonic antigen levels in malignant pleural effusions of lung adenocarcinoma. Pathology. 2010;42(3):224–8.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Toda K, Takahashi J, Tabuchi Y, Koizumi T, Nishimura R, Nishio W, Tsubota N, Matsuoka H. Clinical usefulness of CEA-mRNA determination in minor effusion. J Exp Clin Cancer Res. 2005;24(3):423–9.PubMedPubMedCentralGoogle Scholar
  185. 185.
    Hung TL, Chen FF, Liu JM, Lai WW, Hsiao AL, Huang WT, Chen HH. Su WC: Clinical evaluation of HER-2/neu protein in malignant pleural effusion-associated lung adenocarcinoma and as a tumor marker in pleural effusion diagnosis. Clin Cancer Res. 2003;9(7):2605–12.PubMedPubMedCentralGoogle Scholar
  186. 186.
    Szturmowicz M, Tomkowski W, Fijalkowska A, Kupis W, Cieslik A, Demkow U, Langfort R, Wiechecka A, Orlowski T, Torbicki A. Diagnostic utility of CYFRA 21-1 and CEA assays in pericardial fluid for the recognition of neoplastic pericarditis. Int J Biol Markers. 2005;20(1):43–9.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Li CS, Cheng BC, Ge W, Gao JF. Clinical value of CYFRA21-1, NSE, CA15-3, CA19-9 and CA125 assay in the elderly patients with pleural effusions. Int J Clin Pract. 2007;61(3):444–8.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Hackbarth JS, Murata K, Reilly WM, Algeciras-Schimnich A. Performance of CEA and CA19-9 in identifying pleural effusions caused by specific malignancies. Clin Biochem. 2010;43(13-14):1051–5.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Kuralay F, Tokgoz Z, Comlekci A. Diagnostic usefulness of tumour marker levels in pleural effusions of malignant and benign origin. Clin Chim Acta. 2000;300(1-2):43–55.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Bielsa S, Esquerda A, Salud A, Montes A, Arellano E, Rodriguez-Panadero F, Porcel JM. High levels of tumor markers in pleural fluid correlate with poor survival in patients with adenocarcinomatous or squamous malignant effusions. Eur J Intern Med. 2009;20(4):383–6.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Fiorelli A, Vicidomini G, Di Domenico M, Napolitano F, Messina G, Morgillo F, Ciardiello F, Santini M. Vascular endothelial growth factor in pleural fluid for differential diagnosis of benign and malignant origin and its clinical applications. Interact Cardiovasc Thorac Surg. 2011;12(3):420–4.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Eagles G, Warn A, Ball RY, Baillie-Johnson H, Arakaki N, Daikuhara Y, Warn RM. Hepatocyte growth factor/scatter factor is present in most pleural effusion fluids from cancer patients. Br J Cancer. 1996;73(3):377–81.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Richman SD, Hutchins GG, Seymour MT, Quirke P. What can the molecular pathologist offer for optimal decision making? Ann Oncol. 2010;21(Suppl 7):vii123–9.PubMedPubMedCentralGoogle Scholar
  194. 194.
    Pao W, Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer. 2010;10(11):760–74.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Zhang X, Zhao Y, Wang M, Yap WS, Chang AY. Detection and comparison of epidermal growth factor receptor mutations in cells and fluid of malignant pleural effusion in non-small cell lung cancer. Lung Cancer. 2008;60(2):175–82.PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Pan Q, Pao W, Ladanyi M. Rapid polymerase chain reaction-based detection of epidermal growth factor receptor gene mutations in lung adenocarcinomas. J Mol Diagn. 2005;7(3):396–403.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Asano H, Toyooka S, Tokumo M, Ichimura K, Aoe K, Ito S, Tsukuda K, Ouchida M, Aoe M, Katayama H, et al. Detection of EGFR gene mutation in lung cancer by mutant-enriched polymerase chain reaction assay. Clin Cancer Res. 2006;12(1):43–8.PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Molina-Vila MA, Bertran-Alamillo J, Reguart N, Taron M, Castella E, Llatjos M, Costa C, Mayo C, Pradas A, Queralt C, et al. A sensitive method for detecting EGFR mutations in non-small cell lung cancer samples with few tumor cells. J Thorac Oncol. 2008;3(11):1224–35.PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Miller VA, Riely GJ, Zakowski MF, Li AR, Patel JD, Heelan RT, Kris MG, Sandler AB, Carbone DP, Tsao A, et al. Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib. J Clin Oncol. 2008;26(9):1472–8.PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Brevet M, Arcila M, Ladanyi M. Assessment of EGFR mutation status in lung adenocarcinoma by immunohistochemistry using antibodies specific to the two major forms of mutant EGFR. J Mol Diagn. 2010;12(2):169–76.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Garcia J, Riely GJ, Nafa K, Ladanyi M. KRAS mutational testing in the selection of patients for EGFR-targeted therapies. Semin Diagn Pathol. 2008;25(4):288–94.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2(3):e73.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK, Meyerson M, Eck MJ. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A. 2008;105(6):2070–5.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Suda K, Onozato R, Yatabe Y, Mitsudomi T. EGFR T790M mutation: a double role in lung cancer cell survival? J Thorac Oncol. 2009;4(1):1–4.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Vakiani E, Solit DB. KRAS and BRAF: drug targets and predictive biomarkers. J Pathol. 2011;223(2):219–29.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Ceppi P, Monica V, Righi L, Papotti M, Scagliotti GV. Emerging role of thymidylate synthase for the pharmacogenomic selection of patients with thoracic cancer. Int J Clin Pharmacol Ther. 2010;48(7):481–2.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Bepler G, Sommers KE, Cantor A, Li X, Sharma A, Williams C, Chiappori A, Haura E, Antonia S, Tanvetyanon T, et al. Clinical efficacy and predictive molecular markers of neoadjuvant gemcitabine and pemetrexed in resectable non-small cell lung cancer. J Thorac Oncol. 2008;3(10):1112–8.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Kamoshida S, Suzuki M, Shimomura R, Sakurai Y, Komori Y, Uyama I, Tsutsumi Y. Immunostaining of thymidylate synthase and p53 for predicting chemoresistance to S-1/cisplatin in gastric cancer. Br J Cancer. 2007;96(2):277–83.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Wang X, Zhao J, Yang L, Mao L, An T, Bai H, Wang S, Liu X, Feng G, Wang J. Positive expression of ERCC1 predicts a poorer platinum-based treatment outcome in Chinese patients with advanced non-small-cell lung cancer. Med Oncol. 2010;27(2):484–90.PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Ikeda S, Takabe K, Suzuki K. Expression of ERCC1 and class IIIbeta tubulin for predicting effect of carboplatin/paclitaxel in patients with advanced inoperable non-small cell lung cancer. Pathol Int. 2009;59(12):863–7.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Cobo M, Isla D, Massuti B, Montes A, Sanchez JM, Provencio M, Vinolas N, Paz-Ares L, Lopez-Vivanco G, Munoz MA, et al. Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: a phase III trial in non-small-cell lung cancer. J Clin Oncol. 2007;25(19):2747–54.PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Azuma K, Sasada T, Kawahara A, Hattori S, Kinoshita T, Takamori S, Ichiki M, Imamura Y, Ikeda J, Kage M, et al. Expression of ERCC1 and class III beta-tubulin in non-small cell lung cancer patients treated with a combination of cisplatin/docetaxel and concurrent thoracic irradiation. Cancer Chemother Pharmacol. 2009;64(3):565–73.PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Seve P, Mackey J, Isaac S, Tredan O, Souquet PJ, Perol M, Lai R, Voloch A, Dumontet C. Class III beta-tubulin expression in tumor cells predicts response and outcome in patients with non-small cell lung cancer receiving paclitaxel. Mol Cancer Ther. 2005;4(12):2001–7.PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Seve P, Isaac S, Tredan O, Souquet PJ, Pacheco Y, Perol M, Lafanechere L, Penet A, Peiller EL, Dumontet C. Expression of class III {beta}-tubulin is predictive of patient outcome in patients with non-small cell lung cancer receiving vinorelbine-based chemotherapy. Clin Cancer Res. 2005;11(15):5481–6.PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Dumontet C, Isaac S, Souquet PJ, Bejui-Thivolet F, Pacheco Y, Peloux N, Frankfurter A, Luduena R, Perol M. Expression of class III beta tubulin in non-small cell lung cancer is correlated with resistance to taxane chemotherapy. Bull Cancer. 2005;92(2):E25–30.PubMedPubMedCentralGoogle Scholar
  216. 216.
    Seruga B, Hertz PC, Le LW, Tannock IF. Global drug development in cancer: a cross-sectional study of clinical trial registries. Ann Oncol. 2010;21(4):895–900.PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Subramanian J, Madadi AR, Dandona M, Williams K, Morgensztern D, Govindan R. Review of ongoing clinical trials in non-small cell lung cancer: a status report for 2009 from the ClinicalTrials.gov website. J Thorac Oncol. 2010;5(8):1116–9.PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Bedrossian CW. Diagnostic problems in serous effusions. Diagn Cytopathol. 1998;19(2):131–7.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Lynch TJ Jr. Management of malignant pleural effusions. Chest. 1993;103(4 Suppl):385S–9S.PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    van den Toorn LM, Schaap E, Surmont VF, Pouw EM, van der Rijt KC, van Klaveren RJ. Management of recurrent malignant pleural effusions with a chronic indwelling pleural catheter. Lung Cancer. 2005;50(1):123–7.PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Antunes G, Neville E, Duffy J, Ali N. BTS guidelines for the management of malignant pleural effusions. Thorax. 2003;58(Suppl 2):ii29–38.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Grossi F, Pennucci MC, Tixi L, Cafferata MA, Ardizzoni A. Management of malignant pleural effusions. Drugs. 1998;55(1):47–58.PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Mascaux C, Iannino N, Martin B, Paesmans M, Berghmans T, Dusart M, Haller A, Lothaire P, Meert AP, Noel S, et al. The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer. 2005;92(1):131–9.PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Kosaka T, Yatabe Y, Onozato R, Kuwano H, Mitsudomi T. Prognostic implication of EGFR, KRAS, and TP53 gene mutations in a large cohort of Japanese patients with surgically treated lung adenocarcinoma. J Thorac Oncol. 2009;4(1):22–9.PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Subramanian J, Simon R. Gene expression-based prognostic signatures in lung cancer: ready for clinical use? J Natl Cancer Inst. 2010;102(7):464–74.PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Shah L, Walter KL, Borczuk AC, Kawut SM, Sonett JR, Gorenstein LA, Ginsburg ME, Steinglass KM, Powell CA. Expression of syndecan-1 and expression of epidermal growth factor receptor are associated with survival in patients with nonsmall cell lung carcinoma. Cancer. 2004;101(7):1632–8.PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Lan CC, Wu YK, Lee CH, Huang YC, Huang CY, Tsai YH, Huang SF, Tsao TC. Increased survivin mRNA in malignant pleural effusion is significantly correlated with survival. Jpn J Clin Oncol. 2010;40(3):234–40.PubMedCrossRefPubMedCentralGoogle Scholar
  228. 228.
    Wu YK, Chen KT, Kuo YB, Huang YS, Chan EC. Quantitative detection of survivin in malignant pleural effusion for the diagnosis and prognosis of lung cancer. Cancer Lett. 2009;273(2):331–5.PubMedCrossRefPubMedCentralGoogle Scholar
  229. 229.
    Hsu IL, Su WC, Yan JJ, Chang JM, Lai WW. Angiogenetic biomarkers in non-small cell lung cancer with malignant pleural effusion: correlations with patient survival and pleural effusion control. Lung Cancer. 2009;65(3):371–6.PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Bielsa S, Salud A, Martinez M, Esquerda A, Martin A, Rodriguez-Panadero F, Porcel JM. Prognostic significance of pleural fluid data in patients with malignant effusion. Eur J Intern Med. 2008;19(5):334–9.PubMedCrossRefPubMedCentralGoogle Scholar
  231. 231.
    Zendehrokh N, Franzen L, Dejmek A. Weak telomerase activity in malignant cells in metastatic serous effusions correlation to short survival time. Acta Cytol. 2007;51(3):412–6.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Pathology, Department of Laboratory MedicineKarolinska InstituteStockholmSweden

Personalised recommendations