Breast Carcinoma

  • Fernando SchmittEmail author
  • Ben Davidson


In this chapter we discuss the main morphological aspects of breast carcinoma in serous effusions in the different types of cytological preparations. The differential diagnosis with reactive mesothelial cells, malignant mesothelioma, and other types of adenocarcinoma is carefully approached with a description of the main morphological aspects important for this differentiation. In the section devoted to complementary techniques, the main antibodies used for the diagnosis, as well as for the study of factors predictive to therapy, are discussed.


Breast cancer Breast carcinoma Effusions Metastases Cytology 


  1. 1.
    DeSantis CE, Bray F, Ferlay J, Lortet-Tieulent J, Anderson BO, Jemal A. International variation in female breast cancer incidence and mortality rates. Cancer Epidemiol Biomark Prev. 2015;24:1495–506.CrossRefGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.CrossRefGoogle Scholar
  3. 3.
    Fentiman IS, Millis R, Sexton S, Hayward JL. Pleural effusion in breast cancer: a review of 105 cases. Cancer. 1981;47:2087–92.CrossRefPubMedGoogle Scholar
  4. 4.
    Raju RN, Kardinal CG. Pleural effusion in breast carcinoma: analysis of 122 cases. Cancer. 1981;48:2524–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Wilkes JD, Fidias P, Vaickus L, Perez RP. Malignancy-related pericardial effusion. 127 cases from the Roswell Park Center Institute. Cancer. 1995;76:1377–87.CrossRefPubMedGoogle Scholar
  6. 6.
    Buck M, Ingle JN, Giuliani ER, Gordon JR, Therneau TM. Pericardial effusion in women with breast cancer. Cancer. 1987;60:263–9.CrossRefPubMedGoogle Scholar
  7. 7.
    DiBonito L, Falconieri G, Colautti I, Bonifacio D, Dudine S. The positive peritoneal effusion. A retrospective study of cytopathologic diagnoses with autopsy confirmation. Acta Cytol. 1993;37:483–8.PubMedGoogle Scholar
  8. 8.
    Johnston WW. The malignant pleural effusion. A review of cytopathologic diagnoses of 584 specimens from 472 consecutive patients. Cancer. 1985;56:905–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Pokieser W, Cassik P, Fischer G, Vesely M, Ulrich W, Peters-Engl C. Malignant pleural and pericardial effusion in invasive breast cancer: impact of the site of the primary tumor. Breast Cancer Res Treat. 2004;83:139–42.CrossRefPubMedGoogle Scholar
  10. 10.
    Kamby C, Vejborg I, Kristensen B, Olsen LO, Mouridsen HT. Metastatic pattern in recurrent breast cancer. Special reference to intrathoracic recurrences. Cancer. 1988;62:2226–33.CrossRefPubMedGoogle Scholar
  11. 11.
    DeCamp MM Jr, Mentzer SJ, Swanson SJ, Sugarbaker DJ. Malignant effusive disease of the pleura and pericardium. Chest. 1997;112(4 Suppl):291S–5S.CrossRefPubMedGoogle Scholar
  12. 12.
    Geisinger KR, Stanley MW, Raab SS, Silverman JF, Abati A, editors. Modern cytopathology. Philadelphia: Churchill Livingstone; 2004.Google Scholar
  13. 13.
    Bedrossian CWM, editor. Malignant effusions. A multimodal approach to cytologic diagnosis. New York: Igaku-Shoin; 1994.Google Scholar
  14. 14.
    Shidham VB, Atkinson BF. Cytopathologic diagnosis of serous fluids. London: Elsevier; 2007.Google Scholar
  15. 15.
    Pleural NB. peritoneal and pericardial effusions. In: Bibbo M, Wilbur D, editors. Comprehensive cytopathology. Philadelphia: Elsevier; 2008. p. 515–78.Google Scholar
  16. 16.
    Shidham VB, Falzon M. Serous effusions. In: Gray W, Kocjan G, editors. Diagnostic cytopathology. London: Churchill Livingstone; 2010. p. 115–78.CrossRefGoogle Scholar
  17. 17.
    Rappa G, Lorico A. Phenotypic characterization of mammosphere-forming cells from the human MA-11 breast carcinoma cell line. Exp Cell Res. 2010;316:1576–86.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Danner DE, Gmelich JTA. comparative study of tumor cells from metastatic carcinoma of the breast in effusions. Acta Cytol. 1975;19:509–18.PubMedGoogle Scholar
  19. 19.
    Goldberg S, Rey G, Luce D, Gilg Soit Ilg A, Rolland P, Brochard P, Imbernon E, Goldberg M. Possible effect of environmental exposure to asbestos on geographical variation in mesothelioma rates. Occup Environ Med. 2010;67:417–21.CrossRefPubMedGoogle Scholar
  20. 20.
    Pai RK, West RB. MOC-31 exhibits superior reactivity compared with Ber-EP4 in invasive lobular and ductal carcinoma of the breast: a tissue microarray study. Appl Immunohistochem Mol Morphol. 2009;17:202–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Matos I, Dufloth R, Alvarenga M, Zeferino LC, Schmitt F. p63, cytokeratin 5, and P-cadherin: three molecular markers to distinguish basal phenotype in breast carcinomas. Virchows Arch. 2005;447:688–94.CrossRefPubMedGoogle Scholar
  22. 22.
    Yan Z, Gidley J, Horton D, Roberson J, Eltoum IE, Chhieng DC. Diagnostic utility of mammaglobin and GCDFP-15 in the identification of metastatic breast carcinoma in fluid specimens. Diagn Cytopathol. 2009;37:475–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Fiel MI, Cernaianu G, Burstein DE, Batheja N. Value of GCDFP-15 (BRST-2) as a specific immunocytochemical marker for breast carcinoma in cytologic specimens. Acta Cytol. 1996;40:637–41.CrossRefPubMedGoogle Scholar
  24. 24.
    Wang LJ, Greaves WO, Sabo E, et al. GCDFP-15 positive and TTF-1 negative primary lung neoplasms: a tissue microarray study of 381 primary lung tumors. Appl Immunohistochem Mol Morphol. 2009;17:505–11.CrossRefPubMedGoogle Scholar
  25. 25.
    Yang M, Nonaka D. A study of immunohistochemical differential expression in pulmonary and mammary carcinomas. Mod Pathol. 2010;23:654–61.CrossRefPubMedGoogle Scholar
  26. 26.
    Wang Z, Spaulding B, Sienko A, Liang Y, Li H, Nielsen G, Yub Gong G, Ro JY, Jim Zhai Q. Mammaglobin, a valuable diagnostic marker for metastatic breast carcinoma. Int J Clin Exp Pathol. 2009;2:384–9.PubMedGoogle Scholar
  27. 27.
    Barghava R, Beriwal S, Dabbs DJ. Mammaglobin vs GCDFP-15: an immunohistologic validation survey for sensitivity and specificity. Am J Clin Pathol. 2007;127:103–13.CrossRefGoogle Scholar
  28. 28.
    Sasaki E, Tsunoda N, Hatanaka Y, Mori N, Iwata H, Yatabe Y. Breast-specific expression of MGB1/mammaglobin: an examination of 480 tumors from various organs and clinicopathologic analysis of MGB1-positive breast cancers. Mod Pathol. 2007;20:208–14.CrossRefPubMedGoogle Scholar
  29. 29.
    Roncella S, Ferro P, Franceschini MC, Bacigalupo B, Dessanti P, Sivori M, Carletti AM, Fontana V, Canessa PA, Pistillo MP, Fedeli F. Diagnosis and origin determination of malignant pleural effusions through the use of the breast cancer marker mammaglobin. Diagn Mol Pathol. 2010;19:92–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Shield PW, Papadimos DJ, Walsh MD. GATA3: a promising marker for metastatic breast carcinoma in serous effusion specimens. Cancer Cytopathol. 2014;122:307–12.CrossRefPubMedGoogle Scholar
  31. 31.
    Lew M, Pang JC, Jing X, Fields KL, Roh MH. Young investigator challenge: the utility of GATA3 immunohistochemistry in the evaluation of metastatic breast carcinomas in malignant effusions. Cancer Cytopathol. 2015;123:576–81.CrossRefPubMedGoogle Scholar
  32. 32.
    El Hag MI, Ha J, Farag R, El Hag AM, Michael CW. Utility of GATA-3 in the work-up of breast adenocarcinoma and its differential diagnosis in serous effusions: a cell-block microarray study. Diagn Cytopathol. 2016;44:731–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Albergaria A, Paredes J, Sousa B, Milanezi F, Carneiro V, Bastos J, Costa S, Vieira D, Lopes N, Lam EW, Lunet N, Schmitt F. Expression of FOXA1 and GATA3 in breast cancer: the prognostic significance in hormone receptor-negative tumours. Breast Cancer Res. 2009;11:R40.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dabbs DJ, Landreneau RJ, Liu Y, Raab SS, Maley RH, Tung MY, Silverman JF. Detection of estrogen receptor by immunohistochemistry in pulmonary adenocarcinoma. Ann Thorac Surg. 2002;73:403–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Shabaik A, Lin G, Peterson M, Hasteh F, Tipps A, Datnow B, Weidner N. Reliability of Her2/neu, estrogen receptor, and progesterone receptor testing by immunohistochemistry on cell block of FNA and serous effusions from patients with primary and metastatic breast carcinoma. Diagn Cytopathol. 2011;39:328–32.CrossRefPubMedGoogle Scholar
  36. 36.
    Schlüter B, Gerhards R, Strumberg D, Voigtmann R. Combined detection of HER2/neu gene amplification and protein overexpression in effusions from patients with breast and ovarian cancer. J Cancer Res Clin Oncol. 2010;136:1389–400.CrossRefPubMedGoogle Scholar
  37. 37.
    Arihiro K, Oda M, Ogawa K Tominaga K, Kaneko Y, Shimizu T, Matsumoto S, Oda M, Kurita Y, Taira Y. Discordant HER2 status between primary breast carcinoma and recurrent/metastatic tumors using fluorescence in situ hybridization on cytological samples. Jpn J Clin Oncol. 2013;43:55–62.CrossRefPubMedGoogle Scholar
  38. 38.
    Nakayama Y, Nakagomi H, Omori M, Inoue M, Takahashi K, Maruyama M, Takano A, Furuya K, Amemiya K, Ishii E, Oyama T. Benefits of using the cell block method to determine the discordance of the HR/HER2 expression in patients with metastatic breast cancer. Breast Cancer. 2016;23:633–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Davidson B, Konstantinovsky S, Nielsen S, Dong HP, Berner A, Vyberg M, Reich R. Altered expression of metastasis-associated and regulatory molecules in effusions from breast cancer patients- a novel model for tumor progression. Clin Cancer Res. 2004;10:7335–46.CrossRefPubMedGoogle Scholar
  40. 40.
    Konstantinovsky S, Smith Y, Zilber S, Tuft Stavnes H, Becker AM, Nesland JM, Reich R, Davidson B. Breast carcinoma cells in primary tumors and effusions have different gene array profiles. J Oncol. 2010;2010:969084.CrossRefPubMedGoogle Scholar
  41. 41.
    Davidson B, Dong HP, Holth A, Berner A, Risberg B. The chemokine receptor CXCR4 is more frequently expressed in breast compared to other metastatic adenocarcinomas in effusions. Breast J. 2008;14:476–82.CrossRefPubMedGoogle Scholar
  42. 42.
    Davidson B, Konstantinovsky S, Kleinberg L, Nguyen MTP, Bassarova A, Kvalheim G, Nesland JM, Reich R. The mitogen-activated protein kinases (MAPK) p38 and JNK are markers of tumor progression in breast carcinoma. Gynecol Oncol. 2006;102:453–61.CrossRefPubMedGoogle Scholar
  43. 43.
    Yuan Y, Leszczynska M, Konstantinovsky S, Tropé CG, Reich R, Davidson B. Netrin 4 is upregulated in breast carcinoma effusions compared to corresponding solid tumors. Diagn Cytopathol. 2011;39:562–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Davidson B, Stavnes HT, Holth A, Chen X, Yang Y, Shih IM, Wang TL. Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from breast carcinoma in effusions. J Cell Mol Med. 2011;15:535–44.CrossRefPubMedGoogle Scholar
  45. 45.
    Davidson B, Stavnes HT, Nesland JM, Wohlschlaeger J, Yang Y, Shih IM, Wang TL. Gene expression signatures differentiate adenocarcinoma of lung and breast origin in effusions. Hum Pathol. 2012;43:684–94.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pathology and OncologyMedical Faculty of Porto UniversityPortoPortugal
  2. 2.Molecular Pathology UnitInstitute of Pathology and Molecular Immunology of Porto University, IPATIMUPPortoPortugal
  3. 3.International Academy of CytologyFreiburgGermany
  4. 4.Department of PathologyThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
  5. 5.Faculty of MedicineInstitute of Clinical Medicine, University of OsloOsloNorway

Personalised recommendations