Benign Effusions

  • Pınar FıratEmail author


Serous effusion is a common finding in clinical practice and may be the sign of a systemic disease or a local disorder. Most of the clinically detected effusions, both in adults and children, are associated with reactive conditions. Several laboratory tests, such as protein content of the fluid, lactate dehydrogenase and cholesterol level, and adenosine deaminase activity, are used in the evaluation of serous effusions, shedding valuable insight into the etiology and risk of malignancy. However, to exclude or to diagnose a malignant effusion, cytological examination is frequently needed.

Effusions contain a variety of cells depending on the underlying pathology. Mesothelial cells, as the local elements, are almost always present in the effusions. The other nonneoplastic cells that are commonly encountered are macrophages and blood-borne cells. Some incidental cellular and noncellular elements may also be observed. The predominant cell type in an effusion may provide a clue for the etiology.

Mesothelial cells are characterized by centrally/paracentrally located round to oval nuclei. Their chromatin is finely granular; the nuclear membrane is usually prominent and smooth. Nucleoli may be distinct, but the presence of macronucleoli is not an expected finding. The nuclear-to-cytoplasmic ratio of mesothelial cells varies. Binucleation is a common feature; multinucleated forms may also occur. Mesothelial cells have a characteristic two-tone stained dense cytoplasm. They may contain multiple or single vacuoles. Large hydropic vacuoles displacing the nuclei toward the edge may mimic signet ring cells. Mesothelial groups typically have knobby contours and show slit-like spaces between the cells called “windows.” Cell-in-cell arrangements are common. Mitosis may be seen. When serous membranes are irritated and injured, mesothelial cells proliferate and may show both cellular and structural atypia. There are several well-known conditions causing atypia in mesothelial cells so that clinical information is important in evaluation.

Differentiating reactive mesothelial proliferations from metastatic carcinomas may be difficult in some cases due to either atypical features in mesothelial cells or bland appearance of some carcinomas. The pattern and the cellular features should be evaluated together in such cases, and morphological findings should be combined with immunohistochemistry if the diagnosis is still in doubt. Ancillary tests are needed also for the differential diagnosis between benign and malignant mesothelial proliferations. Malignant mesotheliomas generally do not show clear-cut malignant nuclear features, and pattern analysis is more important than individual cell characteristics for recognizing malignant mesotheliomas in serous effusions.


  1. 1.
    Shidham VB. Introduction. In: Shidham VB, Atkinson BF, editors. Cytopathologic diagnosis of serous fluids. Chap. 1. Philadelphia: Saunders Elsevier; 2007. p. 1–17.Google Scholar
  2. 2.
    Tao LC. Etiology of effusions. In: Tao LC, editor. Cytopathology of malignant effusions. Johnston WW series ed. ASCP theory and practice of cytopathology. vol 6. Chap. 1. Chicago: ASCP Press; 1996. p. 1–55.Google Scholar
  3. 3.
    Sahn SA. The value of pleural fluid analysis. Am J Med Sci. 2008;335:7–15.CrossRefPubMedGoogle Scholar
  4. 4.
    Wong JW, Pitlik D, Abdul-Karim FW. Cytology of pleural, peritoneal and pericardial fluids in children. A 40-year summary. Acta Cytol. 1997;41:467–73.CrossRefPubMedGoogle Scholar
  5. 5.
    DeMay RM. Fluids. In: DeMay RM, editor. The art and science of cytopathology. vol 1. Chap. 8. Chicago: ASCP Press; 1996. p. 257–325.Google Scholar
  6. 6.
    Porcel JM. Pearls and myths in pleural fluid analysis. Respirology. 2011;16:44–52.CrossRefPubMedGoogle Scholar
  7. 7.
    Heffner JE. Discriminating between transudates and exudates. Clin Chest Med. 2006;27:241–52.CrossRefPubMedGoogle Scholar
  8. 8.
    Yousef MM, Michael CW. Body cavity fluids. In: Gattuso P, Reddy VB, Masood S, editor. Differential diagnosis in cytopathology. Chap. 3. New York: Cambridge University Press; 2010. p. 99–150.Google Scholar
  9. 9.
    Sahn SA. Getting the most from pleural fluid analysis. Respirology. 2012;17:270–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Wilcox ME, Chong CAKY, Stanbrook MB, Tricco AC, Wong C, Straus SE. Does this patient have an exudative pleural effusion? The rational clinical examination systematic review. JAMA. 2014;311:2422–31.CrossRefPubMedGoogle Scholar
  11. 11.
    Light RW, Macgregor MI, Luchsinger PC, Ball WC Jr. Pleural effusion: the diagnostic separation of transudates and exudates. Ann Intern Med. 1972;77:507–13.CrossRefPubMedGoogle Scholar
  12. 12.
    Romero-Candeira S, Hernandez L. The separation of transudates and exudates with particular reference to the protein gradient. Curr Opin Pulm Med. 2004;10:294–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Porcel JM, Azzopardi M, Koegelenberg CF, Maldonado F, Rahman NM, Lee YCG. The diagnosis of pleural effusions. Expert Rev Respir Med. 2015;9:801–15.CrossRefPubMedGoogle Scholar
  14. 14.
    Huggins JT. Chylothorax and cholesterol pleural effusion. Semin Respir Crit Care Med. 2010;31:743–50.CrossRefPubMedGoogle Scholar
  15. 15.
    Light RW. Update on tuberculous pleural effusion. Respirology. 2010;15:451–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Porcel JM, Esquerda A, Bielsa S. Diagnostic performance of adenosine deaminase activity in pleural fluid: a single center experience with over 2100 consecutive patients. Eur J Intern Med. 2010;21:419–23.CrossRefPubMedGoogle Scholar
  17. 17.
    Antony VB, Godbey SW, Kunkel SL, et al. Recruitment of inflammatory cells to the pleural space. Chemotactic cytokines, IL-8, and monocyte chemotactic peptide-1 in human pleural fluids. J Immunol. 1993;151:7216–23.PubMedGoogle Scholar
  18. 18.
    Sherr HP, Light RW, Merson MH, Wolf RO, Taylor LL, Hendrix TR. Origin of pleural fluid amylase in esophageal rupture. Ann Intern Med. 1972;76:985–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Kramer MR, Saldana MJ, Cepero RJ, Pitchenik AE. High amylase levels in neoplasm-related pleural effusion. Ann Intern Med. 1989;110:567–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Villena V, López-Encuentra A, García-Luján R, Echave-Sustaeta J, Martínez CJ. Clinical implications of appearance of pleural fluid at thoracentesis. Chest. 2004;125:156–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Light RW. Clinical practice. Pleural effusion. N Engl J Med. 2002;346:1971–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Maldonado F, Hawkins FJ, Daniels CE, Doerr CH, Decker PA, Ryu JH. Pleural fluid characteristics of chylothorax. Mayo Clin Proc. 2009;84:129–33.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Creaney J, Dicka IM, Robinson BW. Comparison of mesothelin and fibulin-3 in pleural fluid and serum as markers in malignant mesothelioma. Curr Opin Pulm Med. 2015;21:352–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Psallidas I, Kalomenidis I, Porcel JM, Robinson BW, Stathopoulos GT. Malignant pleural effusion: from bench to bedside. Eur Respir Rev. 2016;25:189–98.CrossRefPubMedGoogle Scholar
  25. 25.
    Rooper LM, Ali SZ, Olson MT. A minimum fluid volume of 75 mL is needed to ensure adequacy in a pleural effusion: a retrospective analysis of 2540 cases. Cancer (Cancer Cytopathol). 2014;122:657–65.CrossRefGoogle Scholar
  26. 26.
    Porcel JM, Esquerda A, Vives M, Bielsa S. Etiology of pleural effusions: analysis of more than 3,000 consecutive thoracenteses. Arch Bronconeumol. 2014;50:161–5.CrossRefPubMedGoogle Scholar
  27. 27.
    Pereira TC, Saad RS, Liu Y, Silverman JF. The diagnosis of malignancy in effusion cytology: a pattern recognition approach. Adv Anat Pathol. 2006;13:174–84.CrossRefPubMedGoogle Scholar
  28. 28.
    Stevens MW, Leong ASY, Fazzalari NL, Dowling KD, Henderson DW. Cytopathology of malignant mesothelioma: a stepwise logistic regression analysis. Diagn Cytopathol. 1992;8:333–41.CrossRefPubMedGoogle Scholar
  29. 29.
    Boerner SL. Mimicry and pitfalls in effusion cytology. Pathol Case Rev. 2006;11:85–91.CrossRefGoogle Scholar
  30. 30.
    Gordon HY, Sack MJ, Baloch ZW, DeFrias DVS, Gupta PK. Occurrence of intercellular spaces (windows) in metastatic adenocarcinoma in serous fluids: a cytomorphologic, histochemical and ultrastructural study. Diagn Cytopathol. 1999;20:115–9.CrossRefGoogle Scholar
  31. 31.
    Murugan P, Siddaraju N, Habeebullah S, Basu D. Significance of intercellular spaces (windows) in effusion fluid cytology: a study of 46 samples. Diagn Cytopathol. 2008;36:628–32.CrossRefPubMedGoogle Scholar
  32. 32.
    Selvaggi SM. Diagnostic pitfalls of peritoneal washing cytology and the role of cell blocks in their diagnosis. Diagn Cytopathol. 2003;28:335–41.CrossRefPubMedGoogle Scholar
  33. 33.
    Bedrossian CWM. Diagnostic problems in serous effusions. Diagn Cytopathol. 1998;19:131–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Ordonez NG. What are the current best immunohistochemical markers for the diagnosis of epithelioid mesothelioma? A review and update. Hum Pathol. 2007;38:1–16.CrossRefPubMedGoogle Scholar
  35. 35.
    Metzgeroth G, Kuhn C, Schultheis B, Hehlmann R, Hastka J. Diagnostic accuracy of cytology and immunocytology in carcinomatous effusions. Cytopathology. 2008;19:205–11.CrossRefPubMedGoogle Scholar
  36. 36.
    Grefte JM, de Wilde PC, de Salet-van Pol MR, Tomassen M, Raaymakers-van Geloof WL, Bulten J. Improved identification of malignant cells in serous effusions using a small, robust panel of antibodies on paraffin-embedded cell suspensions. Acta Cytol. 2008;52:35–44.CrossRefPubMedGoogle Scholar
  37. 37.
    Das DK. Serous effusions in malignant lymphomas: a review. Diagn Cytopathol. 2006;34:335–47.CrossRefPubMedGoogle Scholar
  38. 38.
    Valdes L, Alvarez D, Valle JM, Pose A, Jose ES. The etiology of pleural effusions in an area with high incidence of tuberculosis. Chest. 1996;109:158–62.CrossRefPubMedGoogle Scholar
  39. 39.
    Hampson C, Lemos JA, Klein JS. Diagnosis and management of parapneumonic effusions. Semin Respir Crit Care Med. 2008;29:414–26.CrossRefPubMedGoogle Scholar
  40. 40.
    Cugell DW, Kamp DW. Asbestos and the pleura. Chest. 2004;125:1103–17.CrossRefPubMedGoogle Scholar
  41. 41.
    Krenke R, Nasilowski J, Korczynski P, et al. Incidence and aetiology of eosinophilic pleural effusion. Eur Respir J. 2009;34:1111–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Rubins JB, Rubins HB. Etiology and prognostic significance of eosinophilic pleural effusions. A prospective study. Chest. 1996;110:1271–4.CrossRefPubMedGoogle Scholar
  43. 43.
    Adelman M, Albelda SM, Gottlieb J, Haponik EF. Diagnostic utility of pleural fluid eosinophilia. Am J Med. 1984;77:915–20.CrossRefPubMedGoogle Scholar
  44. 44.
    Krishnan S, Statsinger AL, Kleinman M, Bertoni MA, Sharma P. Eosinophilic pleural effusion with Charcot-Leyden crystals. Acta Cytol. 1983;27:529–32.PubMedGoogle Scholar
  45. 45.
    Kumar NB, Naylor B. Megakaryocytes in pleural and peritoneal fluids: prevalence, significance, morphology and cytohistological correlation. J Clin Pathol. 1980;33:1153–9.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Bowling MR, Cauthen CG, Perry CD, et al. Pulmonary extramedullary hematopoiesis. J Thorac Imaging. 2008;23:138–41.CrossRefPubMedGoogle Scholar
  47. 47.
    Koch M, Kurian EM. Pleural fluid extramedullary hematopoiesis case report with review of the literature. Diagn Cytopathol. 2016;44:41–4.CrossRefPubMedGoogle Scholar
  48. 48.
    Kobayashi TK, Moritani S, Urabe M, et al. Cytologic diagnosis of endosalpingiosis with pregnant women presenting in peritoneal fluid: a case report. Diagn Cytopathol. 2004;30:422–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Kuritzkes DR, Rein M, Horowitz S, et al. Detached ciliary tufts mistaken for peritoneal parasites: a warning. Rev Infect Dis. 1988;10:1044–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Sidawy MK, Chandra P, Oertel YC. Detached ciliary tufts in female peritoneal washings. A common finding. Acta Cytol. 1987;31:841–4.PubMedGoogle Scholar
  51. 51.
    Risberg B, Davidson B, Dong HP, Nesland JM, Berner A. Flow cytometric immunophenotyping of serous effusions and peritoneal washings: comparison with immunocytochemistry and morphological findings. J Clin Pathol. 2000;53:513–7.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Shield P. Peritoneal washing cytology. Cytopathology. 2004;15:131–41.CrossRefPubMedGoogle Scholar
  53. 53.
    Bharani V, Singh P, Gupta N, Srinivasan R. Significance of flower pot cells in effusion cytology. Diagn Cytopathol. 2017;45:925–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Parwani AV, Chan TY, Ali SZ. Significance of psammoma bodies in serous cavity fluid: a cytopathologic analysis. Cancer. 2004;102:87–91.CrossRefPubMedGoogle Scholar
  55. 55.
    Natanzon A, Kronzon I. Pericardial and pleural effusions in congestive heart failure-anatomical, pathophysiologic, and clinical considerations. Am J Med Sci. 2009;338:211–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Porcel JM. Pleural effusions from congestive heart failure. Semin Respir Crit Care Med. 2010;31:689–97.CrossRefPubMedGoogle Scholar
  57. 57.
    Berger HW, Rammohan G, Neff MS, Buhain WJ. Uremic pleural effusion. Ann Intern Med. 1975;82:362–4.CrossRefPubMedGoogle Scholar
  58. 58.
    Piraino B, Sheth H. Peritonitis—does peritoneal dialysis modality make a difference? Blood Purif. 2010;29:145–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Ejaz AA, Fitzpatrick PM, Durkin AJ, et al. Pathophysiology of peritoneal fluid eosinophilia in peritoneal dialysis patients. Nephron. 1999;81:125–30.CrossRefPubMedGoogle Scholar
  60. 60.
    Han SH, Reynolds TB, Fong TL. Nephrogenic ascites. Analysis of 16 cases and review of the literature. Medicine (Baltimore). 1998;77:233–45.CrossRefGoogle Scholar
  61. 61.
    Browne GW, Pitchumoni CS. Pathophysiology of pulmonary complications of acute pancreatitis. World J Gastroenterol. 2006;12:7087–96.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Pai CG, Suvarna D, Bhat G. Endoscopic treatment as first-line therapy for pancreatic ascites and pleural effusion. J Gastroenterol Hepatol. 2009;24:1198–202.CrossRefPubMedGoogle Scholar
  63. 63.
    Light RW. Pleural effusion in pulmonary embolism. Semin Respir Crit Care Med. 2010;31:716–22.CrossRefPubMedGoogle Scholar
  64. 64.
    Baumann MH, Nolan R, Petrini M, Lee YC, Light RW, Schneider E. Pleural tuberculosis in the United States: incidence and drug resistance. Chest. 2007;131:1125–32.CrossRefPubMedGoogle Scholar
  65. 65.
    Udwadia ZF, Sen T. Pleural tuberculosis: an update. Curr Opin Pulm Med. 2010;16:399–406.CrossRefPubMedGoogle Scholar
  66. 66.
    Skouras VS, Kalomenidis I. Pleural fluid tests to diagnose tuberculous pleuritic. Curr Opin Pulm Med. 2016;22:367–77.CrossRefPubMedGoogle Scholar
  67. 67.
    Trajman A, Kaisermann C, Luiz RR, et al. Pleural fluid ADA, IgA-ELISA and PCR sensitivities for the diagnosis of pleural tuberculosis. Scand J Clin Lab Invest. 2007;67:877–84.CrossRefPubMedGoogle Scholar
  68. 68.
    Valdes L, San-Jose E, Ferreiro L, Golpe A, Gonzales-Barcala FJ, Toubes ME, et al. Predicting malignant and tuberculous pleural effusions through demographics and pleural fluid analysis of patients. Clin Respir J. 2015;9:203–13.CrossRefPubMedGoogle Scholar
  69. 69.
    Ellison E, Lapuerta P, Martin SE. Cytologic features of mycobacterial pleuritis: logistic regression and statistical analysis of a blinded, case-controlled study. Diagn Cytopathol. 1998;19:173–6.CrossRefPubMedGoogle Scholar
  70. 70.
    Lau KY. Numerous mesothelial cells in tuberculous pleural effusions. Chest. 1989;96:438–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Chou CW, Chang SC. Pleuritis as a presenting manifestation of rheumatoid arthritis: diagnostic clues in pleural fluid cytology. Am J Med Sci. 2002;323:158–61.CrossRefPubMedGoogle Scholar
  72. 72.
    Avnon LS, Abu-Shakra M, Flusser D, Heimer D, Sion-Vardy N. Pleural effusion associated with rheumatoid arthritis: what cell predominance to anticipate? Rheumatol Int. 2007;27:919–25.CrossRefPubMedGoogle Scholar
  73. 73.
    Naylor B. The pathognomonic cytologic picture of rheumatoid pleuritis. Acta Cytol. 1990;34:465–73.PubMedGoogle Scholar
  74. 74.
    Brucato A, Tombini V, Guffanti C. Clinical image: comet cells in rheumatoid arthritis. Arthritis Rheum. 2006;54:243.CrossRefPubMedGoogle Scholar
  75. 75.
    Ishiguro N, Tomino Y, Fujito K, Nakayama S, Koide H. A case of massive ascites due to lupus peritonitis with a dramatic response to steroid pulse therapy. Jpn J Med. 1989;28:608–11.CrossRefPubMedGoogle Scholar
  76. 76.
    Ruiz-Argüelles A, Alarcón-Segovia D. Novel facts about an old marker: the LE cell. Scand J Clin Lab Invest Suppl. 2001;235:31–7.PubMedGoogle Scholar
  77. 77.
    Gulhane S, Gangane N. Detection of lupus erythematosus cells in pleural effusion: an unusual presentation of systemic lupus erythematosus. J Cytol. 2012;29:77–9.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Reda MG, Baigelman W. Pleural effusion in systemic lupus erythematosus. Acta Cytol. 1980;24:553–7.PubMedGoogle Scholar
  79. 79.
    Wang DY, Chang DB, Kuo SH, et al. Systemic lupus erythematosus presenting as pleural effusion: report of a case. J Formos Med Assoc. 1995;94:746–9.PubMedGoogle Scholar
  80. 80.
    Park JY, Malik A, Dumoff KL, Gupta PK. Case report and review of lupus erythematosus cells in cytology fluids. Diagn Cytopathol. 2007;35:806–9.CrossRefPubMedGoogle Scholar
  81. 81.
    de Torres EF, Guevara EC. Pleuritis by radiation: report of two cases. Acta Cytol. 1981;25:427–9.Google Scholar
  82. 82.
    von Haam E. The effect of chemotherapy and radiotherapy upon the cells of transudates and exudates. Monogr Clin Cytol. 1977;5:93–123.CrossRefGoogle Scholar
  83. 83.
    Wojno KJ, Olson JL, Sherman ME. Cytopathology of pleural effusions after radiotherapy. Acta Cytol. 1994;38:1–8.PubMedGoogle Scholar
  84. 84.
    Kim NI, Kim GE, Lee JS. Diagnostic usefulness of Claudin-3 and Claudin-4 for immunocytochemical differentiation between metastatic adenocarcinoma cells and reactive mesothelial cells in effusion cell blocks. Acta Cytol. 2016;60(3):232–9.CrossRefPubMedGoogle Scholar
  85. 85.
    Zhu W, Michael CW. WT1, monoclonal CEA, TTF1, and CA125 antibodies in the differential diagnosis of lung, breast, and ovarian adenocarcinomas in serous effusions. Diagn Cytopathol. 2007;35:370–5.CrossRefPubMedGoogle Scholar
  86. 86.
    Pomjanski N, Grote HJ, Doganay P, Schmiemann V, Buckstegge B, Böcking A. Immunocytochemical identification of carcinomas of unknown primary in serous effusions. Diagn Cytopathol. 2005;33:309–15.CrossRefPubMedGoogle Scholar
  87. 87.
    Pu RT, Pang Y, Michael CW. Utility of WT-1, p63, MOC31, mesothelin, and cytokeratin (K903 and CK5/6) immunostains in differentiating adenocarcinoma, squamous cell carcinoma, and malignant mesothelioma in effusions. Diagn Cytopathol. 2008;36:20–5.CrossRefPubMedGoogle Scholar
  88. 88.
    Westfall DE, Fan X, Marchevsky AM. Evidence-based guidelines to optimize the selection of antibody panels in cytopathology: pleural effusions with malignant epithelioid cells. Diagn Cytopathol. 2010;38:9–14.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Whitaker D. Cytopathology of malignant mesothelioma. Cytopathology. 2000;11:139–51.CrossRefPubMedGoogle Scholar
  90. 90.
    Davidson B, Nielsen S, Christensen J, et al. The role of desmin and N-cadherin in effusion cytology: a comparative study using established markers of mesothelial and epithelial cells. Am J Surg Pathol. 2001;25:1405–12.CrossRefPubMedGoogle Scholar
  91. 91.
    Saad RS, Cho P, Liu YL, Silverman JF. The value of epithelial membrane antigen expression in separating benign mesothelial proliferation from malignant mesothelioma. Diagn Cytopathol. 2005;32:156–9.CrossRefPubMedGoogle Scholar
  92. 92.
    Kitazume H, Kitamura K, Mukai K, et al. Cytologic differential diagnosis among reactive mesothelial cells, malignant mesothelioma, and adenocarcinoma: utility of combined E-cadherin and calretinin immunostaining. Cancer. 2000;90:55–60.CrossRefPubMedGoogle Scholar
  93. 93.
    Hasteh F, Grace YL, Weidner N, Michael CW. The use of immuno-histochemistry to distinguish reactive mesothelial cells from malignant mesothelioma in cytologic effusions. Cancer Cytopathol. 2010;118:90–6.CrossRefPubMedGoogle Scholar
  94. 94.
    Andrici J, Sheen A, Sioson L, Wardell K, Clarkson A, Watson N, et al. Loss of expression of BAP1 is a useful adjunct, which strongly supports the diagnosis of mesothelioma in effusion cytology. Mod Pathol. 2015;28(10):1360–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PathologySchool of Medicine, Koc UniversityIstanbulTurkey
  2. 2.[Previously] Department of PathologyIstanbul Faculty of Medicine, Istanbul UniversityIstanbulTurkey

Personalised recommendations