A Primer on Thermoelectric Generators

  • Dario Narducci
  • Peter Bermel
  • Bruno Lorenzi
  • Ning Wang
  • Kazuaki Yazawa
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 268)

Abstract

This chapter is devoted to an analysis of the physics behind the conversion efficiency of thermoelectric generators. After recalling the basic theory of linear irreversible thermodynamics of thermoelectricity, we will focus on the materials and device factors ruling the conversion efficiency of thermoelectric generators. Moving from the well–known Ioffe–Altenkirch formula, the efficiency in the constant–property limit will be comparatively analyzed under Dirichlet and Neumann boundary conditions. Efficiency will be then reconsidered when large temperatire differences are applied, using both Snyder’s concept of compatibility and Ren’s engineering figure of merit. Perfect thermoelectric generators as instances of exo– and endo–reversible engines will also be briefly reviewed along with the yet widely unsolved problem of thermoelectric efficiency under transient conditions.

References

  1. 1.
    D. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, 1995)CrossRefGoogle Scholar
  2. 2.
    H. Goldsmid, Introduction to Thermoelectricity, Springer Series in Materials Science (Springer, Berlin, 2009)Google Scholar
  3. 3.
    V. Zlatić, R. Monnier, Modern Theory of Thermoelectricity (Oxford University Press, Oxford, 2014)Google Scholar
  4. 4.
    K. Behnia, Fundamentals of Thermoelectricity (Oxford University Press, Oxford, 2015)Google Scholar
  5. 5.
    C. Goupil, Continuum Theory and Modeling of Thermoelectric Elements (Wiley, Weinheim, 2016)Google Scholar
  6. 6.
    C.A. Domenicali, Rev. Mod. Phys. 26, 237 (1954)CrossRefGoogle Scholar
  7. 7.
    G.J. Snyder, E.S. Toberer, Nat. Mater. 7(2), 105 (2008)CrossRefGoogle Scholar
  8. 8.
    A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 2, 466 (2009)CrossRefGoogle Scholar
  9. 9.
    M.G. Kanatzidis, Chem. Mater. 22(3), 648 (2010)CrossRefGoogle Scholar
  10. 10.
    A. Shakouri, Annu. Rev. Mater. Res. 41, 399 (2011)CrossRefGoogle Scholar
  11. 11.
    L.D. Zhao, V.P. Dravid, M.G. Kanatzidis, Energy Environ. Sci. 7, 251 (2014)CrossRefGoogle Scholar
  12. 12.
    G. Tan, L.D. Zhao, M.G. Kanatzidis, Chem. Rev. 116(19), 12123 (2016)CrossRefGoogle Scholar
  13. 13.
    W.G. Zeier, A. Zevalkink, Z.M. Gibbs, G. Hautier, M.G. Kanatzidis, G.J. Snyder, Angewandte Chemie - International Edition 55(24), 6826 (2016)CrossRefGoogle Scholar
  14. 14.
    K. Zabrocki, C. Goupil, H. Ouerdane, Y. Apertet, W. Seifert, E. Mller, in Continuum Theory and Modeling of Thermoelectric Elements, ed. by C. Goupil (Wiley, Weinheim, 2016), pp. 75–156. Chap. 2Google Scholar
  15. 15.
    E. Altenkirch, Phys. Z. 10, 560 (1909)Google Scholar
  16. 16.
    A. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch Ltd., London, 1957)Google Scholar
  17. 17.
    C.A. Domenicali, Phys. Rev. 92, 877 (1953)CrossRefGoogle Scholar
  18. 18.
    C.A. Domenicali, J. Appl. Phys. 25(10), 1310 (1954)CrossRefGoogle Scholar
  19. 19.
    H. Jackson, D. Temple, B. Kelly, Introduction to Electric Circuits (Oxford University Press, Oxford, 2015)Google Scholar
  20. 20.
    P.S. Castro, W.W. Happ, J. Appl. Phys. 31(8), 1314 (1960)CrossRefGoogle Scholar
  21. 21.
    K. Yazawa, A. Shakouri, J. Appl. Phys. 111(2), 024509 (2012)CrossRefGoogle Scholar
  22. 22.
    B. Sherman, R.R. Heikes, R.W. Ure Jr., J. Appl. Phys. 31(1), 1 (1960)CrossRefGoogle Scholar
  23. 23.
    M.S. El-Genk, H.H. Saber, Energy Convers. Manag. 44(7), 1069 (2003)CrossRefGoogle Scholar
  24. 24.
    G.J. Snyder, T.S. Ursell, Phys. Rev. Lett. 91(14), 148301 (2003)CrossRefGoogle Scholar
  25. 25.
    G.J. Snyder, in Thermoelectrics Handbook: Macro to Nano, ed. by D.M. Rowe (CRC Press, 2005), pp. 9–26Google Scholar
  26. 26.
    H.S. Kim, W. Liu, G. Chen, C.W. Chu, Z. Ren, Proc. Natl. Acad. Sci. 112(27), 8205 (2015)CrossRefGoogle Scholar
  27. 27.
    I. Novikov, J. Nuclear Energy (1954) 7(1-2), 125 (1958)Google Scholar
  28. 28.
    F.L. Curzon, B. Ahlborn, Am. J. Phys. 43(1), 22 (1975)CrossRefGoogle Scholar
  29. 29.
    Y. Apertet, H. Ouerdane, C. Goupil, P. Lecoeur, Phys. Rev. E 85, 041144 (2012)CrossRefGoogle Scholar
  30. 30.
    C. Van den Broeck, Phys. Rev. Lett. 95, 190602 (2005)CrossRefGoogle Scholar
  31. 31.
    O. Kedem, S.R. Caplan, Trans. Faraday Soc. 61, 1897 (1965)CrossRefGoogle Scholar
  32. 32.
    T. Schmiedl, U. Seifert, EPL (Europhysics Letters) 81(2), 20003 (2008)CrossRefGoogle Scholar
  33. 33.
    D. Agrawal, V. Menon, J. Phys. D Appl. Phys. 30(3), 357 (1997)CrossRefGoogle Scholar
  34. 34.
    W. Seifert, K. Zabrocki, S. Achilles, S. Trimper, in Continuum Theory and Modeling of Thermoelectric Elements, ed. by C. Goupil (Wiley, Weinheim, 2016), pp. 177–226Google Scholar
  35. 35.
    P. Gray, The Dynamic Behavior of Thermoelectric Devices. Technology Press research monographs, 6 (The Technology Press of the Massachusetts Institute of Technology, 1960)Google Scholar
  36. 36.
    M. Apostol, M. Nedelcu, J. Appl. Phys. 108(2), 023702 (2010)CrossRefGoogle Scholar
  37. 37.
    A. Snarskii, I. Bezsudnov, Energy Convers. Manag. 94, 103 (2015)CrossRefGoogle Scholar
  38. 38.
    G.D. Aloysio, G. D’Alessandro, F. de Monte, Int. J. Heat Mass Transf. 95, 972 (2016)CrossRefGoogle Scholar
  39. 39.
    J.G. Stockholm, C. Goupil, P. Maussion, H. Ouerdane, J. Electron. Mater. 44(6), 1768 (2015)CrossRefGoogle Scholar
  40. 40.
    J. García-Cañadas, G. Min, AIP Adv. 6(3), 035008 (2016)CrossRefGoogle Scholar
  41. 41.
    L. Chen, J. Lee, Energy Convers. Manag. 119, 75 (2016)CrossRefGoogle Scholar
  42. 42.
    W.H. Chen, P.H. Wu, X.D. Wang, Y.L. Lin, Energy Convers. Manag. 127, 404 (2016)CrossRefGoogle Scholar
  43. 43.
    I. Volovichev, Physica B 492, 70 (2016)CrossRefGoogle Scholar
  44. 44.
    G. Contento, B. Lorenzi, A. Rizzo, D. Narducci, Energy 131, 230 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dario Narducci
    • 1
  • Peter Bermel
    • 2
  • Bruno Lorenzi
    • 3
  • Ning Wang
    • 4
  • Kazuaki Yazawa
    • 2
  1. 1.Department of Materials ScienceUniversity of Milano-BicoccaMilanItaly
  2. 2.Birck Nanotechnology CenterPurdue UniversityWest LafayetteUSA
  3. 3.University of Milano-BicoccaMilanItaly
  4. 4.Chinese Academy of SciencesInstitute of Soil and Water ConservationYanglingChina

Personalised recommendations