Mathematical Difficulties and Exceptionalities

  • Rachel Lindberg
  • Rhonda Douglas Brown
Chapter

Abstract

In this chapter, we review research on mathematical difficulties and exceptionalities. Mathematical difficulties are distinguished from general learning difficulties, and include developmental dyscalculia and mathematical learning disabilities. We discuss research on cognitive processing associated with mathematical difficulties, including the approximate number system, or number sense, fact retrieval, delayed procedural development, fractions and proportional reasoning, visuospatial reasoning, working memory, and time estimation. We also present neuroscience research indicating specific effects related to mathematics for children with a diversity of neurodevelopmental disorders, syndromes, and conditions, including Autism spectrum disorder, Fragile X syndrome, Turner syndrome, 22q11.2 deletion syndrome, Williams syndrome, Spina Bifida, prenatal alcohol exposure, premature birth, developmental coordination disorder, attention deficit hyperactivity disorder, epilepsy, traumatic brain injury, schizophrenia, and depression. Neuroscience research related to individual differences in language and reading and giftedness, including synesthesia, is also discussed. We conclude by raising considerations and limitations for interpreting neuroscience research on mathematical difficulties and exceptionalities, including small sample sizes, group assignment, inferences from lesion and neuroimaging studies, and the disease model.

Keywords

Mathematical difficulties Developmental dyscalculia Mathematical learning disabilities Autism spectrum disorder Fragile X syndrome Turner syndrome 22q11.2 deletion syndrome Williams syndrome Giftedness Synesthesia 

References

  1. Andersson, U., & Östergren, R. (2012). Number magnitude processing and basic cognitive functions in children with mathematical learning disabilities. Learning and Individual Differences, 22(6), 701–714. https://doi.org/10.1016/j.lindif.2012.05.004 CrossRefGoogle Scholar
  2. Ansari, D. (2010). Neurocognitive approaches to developmental disorders of numerical and mathematical cognition: The perils of neglecting the role of development. Learning and Individual Differences, 20(2), 123–129. https://doi.org/10.1016/j.lindif2009.06.001 CrossRefGoogle Scholar
  3. Ansari, D., & Karmiloff-Smith, A. (2002). Atypical trajectories of number development: A neuroconstructivist perspective. Trends in Cognitive Sciences, 6(12), 511–516. https://doi.org/10.1016/S1364-6613(02)02040-5 CrossRefPubMedGoogle Scholar
  4. Ashkenazi, S., Rosenberg-Lee, M., Metcalfe, A. W. S., Swigart, A. G., & Menon, V. (2013). Visuospatial working memory is an important source of domain-general vulnerability in the development of arithmetic cognition. Neuropsychologia, 51(11), 2305–2317. https://doi.org/10.1016/j.neuropsychologia.2013.06.031 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ashkenazi, S., Rosenberg-Lee, M., Tenison, C., & Menon, V. (2012). Weak task-related modulation and stimulus representations during arithmetic problem-solving in children with developmental dyscalculia. Developmental Cognitive Neuroscience, 2(Suppl 1), S152–S166. https://doi.org/10.1016/j.dcn.2011.09.006 CrossRefPubMedGoogle Scholar
  6. Barnes, M. A., Raghubar, K. P., English, L., Williams, J. M., Taylor, H., & Landry, S. (2014). Longitudinal mediators of achievement in mathematics and reading in typical and atypical development. Journal of Experimental Child Psychology, 119, 1–16. https://doi.org/10.1016/j.jecp.2013.09.006 CrossRefPubMedGoogle Scholar
  7. Baron-Cohen, S., Bor, D., Billington, J., Asher, J., Wheelwright, S., & Ashwin, C. (2007). Savant memory in a man with colour formnumber synaesthesia and Asperger Syndrome. Journal of Consciousness Studies, 14, 237–251.Google Scholar
  8. Baroody, A. J., Bajwa, N. P., & Eiland, M. (2009). Why can’t Johnny remember the basic facts? Developmental Disabilities Research Reviews, 15(1), 69–79. https://doi.org/10.1002/ddrr.45 CrossRefPubMedGoogle Scholar
  9. Bartelet, D., Ansari, D., Vaessen, A., & Blomert, L. (2014). Cognitive subtypes of mathematics learning difficulties in primary education. Research in Developmental Disabilities, 35(1), 657–670. https://doi.org/10.1016/j.ridd.2013.12.010 CrossRefPubMedGoogle Scholar
  10. Berteletti, I., Prado, J., & Booth, J. R. (2014). Children with mathematical learning disability fail in recruiting verbal and numerical brain regions when solving simple multiplication problems. Cortex, 57, 143–155. https://doi.org/10.1016/j.cortex.2014.04.001 CrossRefPubMedGoogle Scholar
  11. Bor, D., Billington, J., & Baron-Cohen, S. (2007). Savant memory for digits in a case of synaesthesia and Asperger syndrome is related to hyperactivity in the lateral prefrontal cortex. Neurocase, 13(5–6), 311–319. https://doi.org/10.1080/13554790701844945 CrossRefPubMedGoogle Scholar
  12. Brankaer, C., Ghesquière, P., De Wel, A., Swillen, A., & De Smedt, B. (2016). Numerical magnitude processing impairments in genetic syndromes: A cross-syndrome comparison of Turner and 22q11.2 deletion syndromes. Developmental Science, 1–14. https://doi.org/10.1111/desc.12458
  13. Brogaard, B., Vanni, S., & Silvanto, J. (2013). Seeing mathematics: Perceptual experience and brain activity in acquired synesthesia. Neurocase, 19(6), 566–575. https://doi.org/10.1080/13554794.2012.701646 CrossRefPubMedGoogle Scholar
  14. Chiang, H., & Lin, Y. (2007). Mathematical ability of students with Asperger syndrome and high-functioning autism: A review of literature. Autism, 11(6), 547–556. https://doi.org/10.1177/1362361307083259 CrossRefPubMedGoogle Scholar
  15. Damarla, S. R., Keller, T. A., Kana, R. K., Cherkassky, V. L., Williams, D. L., Minshew, N. J., & Just, M. A. (2010). Cortical underconnectivity coupled with preserved visuospatial cognition in autism: Evidence from an fMRI study of an embedded figures task. Autism Research, 3(5), 273–279. https://doi.org/10.1002/aur.153 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Davis, N., Cannistraci, C. J., Rogers, B. P., Gatenby, J. C., Fuchs, L. S., Anderson, A. W., & Gore, J. C. (2009). Aberrant functional activation in school age children at-risk for mathematical disability: A functional imaging study of simple arithmetic skill. Neuropsychologia, 47, 2470–2479. https://doi.org/10.1016/j.neuropsychologia.2009.04.024 CrossRefPubMedPubMedCentralGoogle Scholar
  17. De Smedt, B., & Gilmore, C. K. (2011). Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology, 108(2), 278–292. https://doi.org/10.1016/j.jecp.2010.09.003 CrossRefPubMedGoogle Scholar
  18. De Smedt, B., Reynvoet, B., Swillen, A., Verschaffel, L., Boets, B., & Ghesquière, P. (2009). Basic number processing and difficulties in single-digit arithmetic: Evidence from velo-cardio-facial syndrome. Cortex, 45(2), 177–188. https://doi.org/10.1016/j.cortex.2007.06.003 CrossRefPubMedGoogle Scholar
  19. De Smedt, B., Swillen, A., Devriendt, K., Fryns, J. P., Verschaffel, L., & Ghesquière, P. (2007). Mathematical disabilities in children with velo-cardio-facial syndrome. Neuropsychologia, 45(5), 885–895. https://doi.org/10.1016/j.neuropsychologia.2006.08.024 CrossRefPubMedGoogle Scholar
  20. De Smedt, B., Swillen, A., Verschaffel, L., & Ghesquière, P. (2009). Mathematical learning disabilities in children with 22q11.2 deletion syndrome: A review. Developmental Disabilities Research Reviews, 15(1), 4–10. https://doi.org/10.1002/ddrr.44 CrossRefPubMedGoogle Scholar
  21. Defever, E., De Smedt, B., & Reynvoet, B. (2013). Numerical matching judgments in children with mathematical learning disabilities. Research in Developmental Disabilities, 34(10), 3182–3189. https://doi.org/10.1016/j.ridd.2013.06.018 CrossRefPubMedGoogle Scholar
  22. Delazer, M., Benke, T., Trieb, T., Schocke, M., & Ischebeck, A. (2006). Isolated numerical skills in posterior cortical atrophy—An fMRI study. Neuropsychologia, 44(10), 1909–1913. https://doi.org/10.1016/j.neuropsychologia.2006.02.007 CrossRefPubMedGoogle Scholar
  23. Dennis, M., Berch, D. B., & Mazzocco, M. M. M. (2009). Mathematical learning disabilities in special populations: Phenotypic variation and cross-disorder comparisons. Developmental Disabilities Research Reviews, 15(1), 80–89. https://doi.org/10.1002/ddrr.54 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Desoete, A., Praet, M., Titeca, D., & Ceulemans, A. (2013). Cognitive phenotype of mathematical learning disabilities: What can we learn from siblings? Research in Developmental Disabilities, 34, 404–412. https://doi.org/10.1016/j.ridd/2012.08.022 CrossRefPubMedGoogle Scholar
  25. English, L. H., Barnes, M. A., Taylor, H. B., & Landry, S. H. (2009). Mathematical development in spina bifida. Developmental Disabilities Research Reviews, 15(1), 28–34. https://doi.org/10.1002/ddrr.48 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fehr, T., Weber, J., Willmes, K., & Herrmann, M. (2010). Neural correlates in exceptional mental arithmetic—About the neural architecture of prodigious skills. Neuropsychologia, 48(5), 1407–1416. https://doi.org/10.1016/j.neuropsychologia.2010.01.007 CrossRefPubMedGoogle Scholar
  27. Geary, D. C., Hoard, M. K., Byrd-Craven, J., & DeSoto, C. M. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 88, 121–151.CrossRefGoogle Scholar
  28. Geary, D. C. (2010). Mathematical disabilities: Reflections on cognitive, neuropsychological, and genetic components. Learning and Individual Differences, 20, 130–133. https://doi.org/10.1016/j.lindif.2009.10.008 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Geary, D. C. (2011). Consequences, characteristics, and causes of mathematical learning disabilities and persistent low achievement in mathematics. Journal of Developmental & Behavioral Pediatrics, 32(3), 250–263. https://doi.org/10.1097/DBP.0b013e318209edef CrossRefGoogle Scholar
  30. Geary, D. C. (2013). Early foundations for mathematics learning and their relations to learning disabilities. Current Directions in Psychological Science, 22(1), 23–27. https://doi.org/10.1177/0963721412469398 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Geary, D. C., Hoard, M. K., & Bailey, D. H. (2012). Fact retrieval deficits in low achieving children and children with mathematical learning disability. Journal of Learning Disabilities, 45(4), 291–307. https://doi.org/10.1177/0022219410392046 CrossRefPubMedGoogle Scholar
  32. Geary, D. C., Hoard, M. K., Nugent, L., & Bailey, D. H. (2012). Mathematical cognition deficits in children with learning disabilities and persistent low achievement: A five-year prospective study. Journal of Educational Psychology, 104(1), 206–223. https://doi.org/10.1037/a0025398 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gilger, J. W., & Hynd, G. W. (2008). Neurodevelopmental variation as a framework for thinking about the twice exceptional. Roeper Review, 30(4), 214–228. https://doi.org/10.1080/02783190802363893 CrossRefGoogle Scholar
  34. Grabner, R. H., Saalbach, H., & Eckstein, D. (2012). Language-switching costs in bilingual mathematics learning. Mind, Brain, and Education, 6(3), 147–155. https://doi.org/10.1111/j.1751-228X.2012.01150.x CrossRefGoogle Scholar
  35. Hammer, R., Tennekoon, M., Cooke, G. E., Gayda, J., Stein, M. A., & Booth, J. R. (2015). Feedback associated with expectation for larger-reward improves visuospatial working memory performances in children with ADHD. Developmental Cognitive Neuroscience, 14, 38–49. https://doi.org/10.1016/j.dcn.2015.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hecht, S. A., & Vagi, K. J. (2010). Sources of group and individual differences in emerging fraction skills. Journal of Educational Psychology, 102(4), 843–859. https://doi.org/10.1037/a0019824 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hugdahl, K., Rund, B. R., Lund, A., Asbjørnsen, A., Egeland, J., Ersland, L., … Thomsen, T. (2004). Brain activation measured with fMRI during a mental arithmetic task in schizophrenia and major depression. The American Journal of Psychiatry, 161(2), 286–293. https://doi.org/10.1176/appi.ajp.161.2.286 CrossRefPubMedGoogle Scholar
  38. Hurks, P. M., & van Loosbroek, E. (2014). Time estimation deficits in childhood mathematics difficulties. Journal of Learning Disabilities, 47(5), 450–461. https://doi.org/10.1177/0022219412468161 CrossRefPubMedGoogle Scholar
  39. Iuculano, T., Rosenberg-Lee, M., Supekar, K., Lynch, C. J., Khouzam, A., Phillips, J., … Menon, V. (2014). Brain organization underlying superior mathematical abilities in children with autism. Biological Psychiatry, 75(3), 223–230. https://doi.org/10.1016/j.biopsych.2013.06.018 CrossRefPubMedGoogle Scholar
  40. Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). Arithmetic fact mastery in young children: A longitudinal investigation. Journal of Experimental Child Psychology, 85(2), 109–119. https://doi.org/10.1016/S0022-0965(03)00032-8 CrossRefGoogle Scholar
  41. Jordan, N. C., & Levine, S. C. (2009). Socioeconomic variation, number competence, and mathematics learning difficulties in young children. Developmental Disabilities Research Reviews, 15(1), 60–68. https://doi.org/10.1002/ddrr.46 CrossRefPubMedGoogle Scholar
  42. Karagiannakis, G., Baccaglini-Frank, A., & Papadatos, Y. (2014). Mathematical learning difficulties subtypes classification. Frontiers in Human Neuroscience, 8(57), 1–5. https://doi.org/10.3389/fnhum.2014.00057 CrossRefGoogle Scholar
  43. Kaufmann, L., Mazzocco, M. M., Dowker, A., von Aster, M., Göbel, S. M., Grabner, R. H., … Nuerk, H. C. (2013). Dyscalculia from a developmental and differential perspective. Frontiers in Psychology, 4(516), 1–5. https://doi.org/10.3389/fpsyg.2013.00516 CrossRefGoogle Scholar
  44. Kaufmann, L., Wood, G., Rubinsten, O., & Henik, A. (2011). Meta-analyses of developmental fMRI studies investigating typical and atypical trajectories of number processing and calculation. Developmental Neuropsychology, 36(6), 763–787. https://doi.org/10.1080/87565641.2010.549884 CrossRefPubMedGoogle Scholar
  45. Klein, E., Moeller, K., Kiechl-Kohlendorfer, U., Kremser, C., Starke, M., Cohen Kadosh, R., … Kaufmann, L. (2014). Processing of intentional and automatic number magnitudes in children born prematurely: Evidence from fMRI. Developmental Neuropsychology, 39(5), 342–364. https://doi.org/10.1080/87565641.2014.939179 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kucian, K., Ashkenazi, S. S., Hänggi, J., Rotzer, S., Jäncke, L., Martin, E., & von Aster, M. (2014). Developmental dyscalculia: A dysconnection syndrome? Brain Structure & Function, 219(1), 1721–1733. https://doi.org/10.1007/s00429-013-0597-4 CrossRefGoogle Scholar
  47. Kucian, K., & von Aster, M. (2015). Developmental dyscalculia. European Journal of Pediatrics, 174(1), 1–13. https://doi.org/10.1007/s00431-014-2455-7 CrossRefPubMedGoogle Scholar
  48. Kuhn, J. T. (2015). Developmental dyscalculia: Neurobiological, cognitive, and developmental perspectives. Zeitschrift für Psychologie, 223(2), 69–82. https://doi.org/10.1027/2151-2604/a000205 CrossRefGoogle Scholar
  49. Lenartowicz, A., Delorme, A., Walshaw, P. D., Cho, A. L., Bilder, R. M., McGough, J. J., … Loo, S. K. (2014). Electroencephalography correlates of spatial working memory deficits in attention-deficit/hyperactivity disorder: Vigilance, encoding, and maintenance. The Journal of Neuroscience, 34(4), 1171–1182. https://doi.org/10.1523/JNEUROSCI.1765-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lv, Z., Huang, D., Ye, W., Chen, Z., Huang, W., & Zheng, J. (2014). Alteration of functional connectivity within visuospatial working memory-related brain network in patients with right temporal lobe epilepsy: A resting-state fMRI study. Epilepsy & Behavior, 35, 64–71. https://doi.org/10.1016/j.yebeh.2014.04.001 CrossRefGoogle Scholar
  51. Mammarella, I. C., Bomba, M., Caviola, S., Broggi, F., Neri, F., Lucangeli, D., & Nacinovich, R. (2013). Mathematical difficulties in nonverbal learning disability or co-morbid dyscalculia and dyslexia. Developmental Neuropsychology, 38(6), 418–432. https://doi.org/10.1080/87565641.2013.817583 CrossRefPubMedGoogle Scholar
  52. Mazzocco, M. M. M., & Hanich, L. B. (2010). Math achievement, numerical processing, and executive functions in girls with Turner syndrome: Do girls with Turner syndrome have mathematical learning disability? Learning and Individual Differences, 20(2), 70–81. https://doi.org/10.1016/j.lindif.2009.10.011 CrossRefGoogle Scholar
  53. Mazzocco, M. M. M., & Myers, G. F. (2003). Complexities in identifying and defining mathematics learning disability in the primary school-age years. Annals of Dyslexia, 53(1), 218–253. https://doi.org/10.1007/s11881-003-0011-7 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Menon, V. (2016). Working memory in children’s mathematical learning and its disruption in dyscalculia. Current Opinion in Behavioral Sciences, 10, 125–132. https://doi.org/10.1016/j.cobeha.2016.05.014 CrossRefGoogle Scholar
  55. Meyer, M. L., Salimpoor, V. N., Wu, S. S., Geary, D. C., & Menon, V. (2010). Differential contribution of specific working memory components to mathematics achievement in 2nd and 3rd graders. Learning and Individual Differences, 20(2), 101–109. https://doi.org/10.1016/j.lindif.2009.08.004 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mondt, K., Struys, E., Van den Noort, M., Balériaux, D., Metens, T., Paquier, P., … Denolin, V. (2011). Neural differences in bilingual children’s arithmetic processing depending on language of instruction. Mind, Brain, and Education, 5(2), 79–88. https://doi.org/10.1111/j.1751-228X.2011.01113.x CrossRefGoogle Scholar
  57. Murphy, M. M. (2009). A review of mathematical learning disabilities in children with fragile X syndrome. Developmental Disabilities Research Reviews, 15(1), 21–27. https://doi.org/10.1002/ddrr.49 CrossRefPubMedGoogle Scholar
  58. Mussolin, C., De Volder, A., Grandin, C., Schlögel, X., Nassogne, M. C., & Noël, M. P. (2010). Neural correlates of symbolic number comparison in developmental dyscalculia. Journal of Cognitive Neuroscience, 22(5), 860–874.CrossRefGoogle Scholar
  59. O’Hearn, K., & Luna, B. (2009). Mathematical skills in Williams syndrome: Insight into the importance of underlying representations. Developmental Disabilities Research Reviews, 15(1), 11–20. https://doi.org/10.1002/ddrr.47 CrossRefPubMedGoogle Scholar
  60. O’Hearn, K., Velanova, K., Lynn, A., Wright, C., Hallquist, M., Minshew, N., & Luna, B. (2016). Abnormalities in brain systems supporting individuation and enumeration in autism. Autism Research, 9, 82–96. https://doi.org/10.1002/aur.1498 CrossRefPubMedGoogle Scholar
  61. Olulade, O. A., Gilger, J. W., Talavage, T. M., Hynd, G. W., & McAteer, C. I. (2012). Beyond phonological processing deficits in adult dyslexics: Atypical fMRI activation patterns for spatial problem-solving. Developmental Neuropsychology, 37(7), 617–635. https://doi.org/10.1080/87565641.2012.702826 CrossRefPubMedGoogle Scholar
  62. Oswald, T. M., Beck, J. S., Iosif, A., McCauley, J. B., Gilhooly, L. J., Matter, J. C., & Solomon, M. (2016). Clinical and cognitive characteristics associated with mathematics problem-solving in adolescents with autism spectrum disorder. Autism Research, 9(4), 480–490. https://doi.org/10.1002/aur.1524 CrossRefPubMedGoogle Scholar
  63. Passolunghi, M. C., & Mammarella, I. C. (2010). Spatial and visual working memory ability in children with difficulties in arithmetic word problem-solving. European Journal of Cognitive Psychology, 22(6), 944–963. https://doi.org/10.1080/09541440903091127 CrossRefGoogle Scholar
  64. Pelphrey, K. A., Yang, D. Y., & McPartland, J. C. (2014). Building a social neuroscience of autism spectrum disorder. In S. L. Andersen & D. S. Pine (Eds.), The neurobiology of childhood (pp. 215–233). New York, NY: Springer-Verlag Publishing. https://doi.org/10.1007/978-3-662-45758-0_253 CrossRefGoogle Scholar
  65. Pieters, S., Desoete, A., Van Waelvelde, H., Vanderswalmen, R., & Roeyers, H. (2012). Mathematical problems in children with developmental coordination disorder. Research in Developmental Disabilities, 33(4), 1128–1135. https://doi.org/10.1016/j.ridd.2012.02.007 CrossRefPubMedGoogle Scholar
  66. Pieters, S., Roeyers, H., Rosseel, Y., Van Waelvelde, H., & Desoete, A. (2015). Identifying subtypes among children with developmental coordination disorder and mathematical learning disabilities, using model-based clustering. Journal of Learning Disabilities, 48(1), 83–95. https://doi.org/10.1177/0022219413491288 CrossRefPubMedGoogle Scholar
  67. Prescott, J., Gavrilescu, M., Cunnington, R., O’Boyle, M. W., & Egan, G. F. (2010). Enhanced brain connectivity in mathematical-gifted adolescents: An fMRI study using mental rotation. Cognitive Neuroscience, 1(4), 277–288. https://doi.org/10.1080/17588928.2010.506951 CrossRefPubMedGoogle Scholar
  68. Raghubar, K., Cirino, P., Barnes, M., Ewing-Cobbs, L., Fletcher, J., & Fuchs, L. (2009). Errors in multi-digit arithmetic and behavioral inattention in children with mathematical difficulties. Journal of Learning Disabilities, 42(4), 356–371. https://doi.org/10.1177/0022219409335211 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Raghubar, K. P., Barnes, M. A., Prasad, M., Johnson, C. P., & Ewing-Cobbs, L. (2013). Mathematical outcomes and working memory in children with TBI and orthopedic injury. Journal of the International Neuropsychological Society, 19(3), 254–263. https://doi.org/10.1017/S1355617712001312 CrossRefPubMedGoogle Scholar
  70. Rivera, S. M., Menon, V., White, C. D., Glaser, B., & Reiss, A. L. (2002). Functional brain activation during arithmetic processing in females with fragile X syndrome is related to FMRI protein expression. Human Brain Mapping, 16(4), 206–218. https://doi.org/10.1002/hbm.10048 CrossRefPubMedGoogle Scholar
  71. Rodríguez-Santos, J. M., Calleja, M., García-Orza, J., Iza, M., & Damas, J. (2014). Quantity processing in deaf and hard of hearing children: Evidence from symbolic and nonsymbolic comparison tasks. American Annals of the Deaf, 159(1), 34–44. https://doi.org/10.1353/aad.2014.0015 CrossRefPubMedGoogle Scholar
  72. Rosenzweig, C., Krawec, J., & Montague, M. (2011). Metacognitive strategy use of eighth-grade students with and without learning disabilities during mathematical problem-solving: A think-aloud analysis. Journal of Learning Disabilities, 44(6), 508–520. https://doi.org/10.1177/0022219410378445 CrossRefPubMedGoogle Scholar
  73. Rotzer, S., Loenneker, T., Kucian, K., Martin, E., Klaver, P., & von Aster, M. (2009). Dysfunctional neural network of spatial working memory contributes to developmental dyscalculia. Neuropsychologia, 47(13), 2859–2865. https://doi.org/10.1016/j.neuropsychologia.2009.06.009 CrossRefPubMedGoogle Scholar
  74. Saalbach, H., Eckstein, D., Andri, N., Hobi, R., & Grabner, R. H. (2013). When language of instruction and language of application differ: Cognitive costs of bilingual mathematics learning. Learning and Instruction, 26, 36–44. https://doi.org/10.1016/j.learninstruc.2013.01.002 CrossRefGoogle Scholar
  75. Santhanam, P., Li, Z., Hu, X., Lynch, M. E., & Coles, C. D. (2009). Effects of prenatal alcohol exposure on brain activation during an arithmetic task: An fMRI study. Alcoholism: Clinical and Experimental Research, 33(11), 1901–1908. https://doi.org/10.1111/j.1530-0277.2009.01028.x CrossRefGoogle Scholar
  76. Schatz, A. M., Ballantyne, A. O., & Trauner, D. A. (2000). A hierarchical analysis of block design errors in children with early focal brain damage. Developmental Neuropsychology, 17(1), 75–83. https://doi.org/10.1207/S15326942DN1701_05 CrossRefPubMedGoogle Scholar
  77. Stark, D., Eve, M., & Murphy, T. (2016). Interactive specialisation theory, typical numerical development and the case of dyscalculia. Educational & Child Psychology, 33(1), 65–74.Google Scholar
  78. Starke, M., Kiechl-Kohlendorfer, U., Kucian, K., Peglow, U. P., Kremser, C., Schocke, M., & Kaufmann, L. (2013). Brain structure, number magnitude processing, and mathematical proficiency in 6- to 7-year-old children born prematurely: A voxel-based morphometry study. Neuroreport, 24(8), 419–424.CrossRefGoogle Scholar
  79. Tolar, T. D., Fuchs, L., Fletcher, J. M., Fuchs, D., & Hamlett, C. L. (2016). Cognitive profiles of mathematical problem-solving learning disability for different definitions of disability. Journal of Learning Disabilities, 49(3), 240–256. https://doi.org/10.1177/0022219414538520 CrossRefPubMedGoogle Scholar
  80. van Ewijk, H., Weeda, W. D., Heslenfeld, D. J., Luman, M., Hartman, C. A., Hoekstra, P. J., … Oosterlaan, J. (2015). Neural correlates of visuospatial working memory in attention-deficit/hyperactivity disorder and healthy controls. Psychiatry Research: Neuroimaging, 233(2), 233–242. https://doi.org/10.1016/j.pscychresns.2015.07.003 CrossRefPubMedGoogle Scholar
  81. van Garderen, D., & Montague, M. (2003). Visual-spatial representation, mathematical problem-solving, and students of varying abilities. Learning Disabilities Research & Practice, 18(4), 246–254.CrossRefGoogle Scholar
  82. van’t Noordende, J. E., van Hoogmoed, A. H., Schot, W. D., & Kroesbergen, E. H. (2016). Number line estimation strategies in children with mathematical learning difficulties measured by eye tracking. Psychological Research, 80, 368–378. https://doi.org/10.1007/s00426-015-0736-z CrossRefPubMedGoogle Scholar
  83. Vilgis, V., Chen, J., Silk, T. J., Cunnington, R., & Vance, A. (2014). Frontoparietal function in young people with dysthymic disorder (DSM-5: Persistent depressive disorder) during spatial working memory. Journal of Affective Disorders, 160, 34–42. https://doi.org/10.1016/j.jad.2014.01.024 CrossRefPubMedGoogle Scholar
  84. von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine & Child Neurology, 49(11), 868–873. https://doi.org/10.1111/j.1469-8749.2007.00868 CrossRefGoogle Scholar
  85. Yamada, T., Ohta, H., Watanabe, H., Kanai, C., Tani, M., Ohno, T., … Hashimoto, R. (2012). Functional alterations in neural substrates of geometric reasoning in adults with high-functioning autism. PLoS One, 7(8), 1–11. https://doi.org/10.1371/journal.pone.0043220 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Rachel Lindberg
  • Rhonda Douglas Brown
    • 1
  1. 1.Developmental & Learning Sciences Research CenterSchool of Education, University of CincinnatiCincinnatiUSA

Personalised recommendations