Advertisement

Why are Memristor and Memistor Different Devices?

  • Shyam Prasad Adhikari
  • Hyongsuk KimEmail author
Chapter

Abstract

This paper clarifies why the “memristor” is fundamentally different from a 3-terminal device with a similarly-sounding name called the “memristor”. It is shown that the memristor is a basic 2-terminal circuit element based on classic nonlinear circuit theory but the memistor is an ad hoc 3-terminal devise for one specific application. The memistor is difficult to predict its behavior when it is connected with other circuit elements.

References

  1. 1.
    Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circ. Theor. 18(5), 507–519 (1971)CrossRefGoogle Scholar
  2. 2.
    Chua, L.O.: Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)CrossRefGoogle Scholar
  3. 3.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  4. 4.
    Widrow, B.: An Aadaptive ADALINE neuron using chemical memistors. Stanford Electronics Laboratories Technical Report, 1553–2 (1960)Google Scholar
  5. 5.
    Xia, Q., Pickett, M.D., Yang, J.J., Li, X., Wu, W., Riberio, G.M., Williams, R.S.: Two- and three-terminal resistive switches: nanometer-scale memristors and memistors. Adv. Funct.Mater. 21, 2660–2665 (2011)CrossRefGoogle Scholar
  6. 6.
    Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kim, H., Sah, M.P., Yang, C., Roska, T., Chua: Neural synaptic weighting with a pulse-based memristor circuit. IEEE Trans. Circ. Syst. I 59(1), 148–158 (Jan. 2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chua, L.O.: Introduction to nonlinear network theory. McGraw-Hill Book Co. 86–106 (1964)Google Scholar
  9. 9.
    Chua, L.O.: Device modeling via basic nonlinear circuit elements. IEEE Trans. Circ. Syst. CAS-27(11), 1014–1044 (1980)Google Scholar
  10. 10.
    Brayton, R.K., Chua, L.O., Rhodes, J.D., Spence, R.: Modern network theory – An Introduction, pp. 65–172. PGeorgi, St. Saphorin (1978)Google Scholar
  11. 11.
    Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Letters 10, 1297–1301 (2010)CrossRefGoogle Scholar
  12. 12.
    Itoh, M., Chua, L.O.: Memristor hamiltonian circuits. Int. J. Bifurcat. Chaos 21(9), 2395–2425 (2011)CrossRefGoogle Scholar
  13. 13.
    Muthuswamy, B., Chua, L.O.: Simplest chaotic circuit. Int. J. Bifurcat. Chaos 20(5), 1567–1658 (2010)CrossRefGoogle Scholar
  14. 14.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction in nerve. J. Physiol. 117, 500–544 (1952)Google Scholar
  15. 15.
    Bray, M.G., Werner, D.H.: Passive switching of electromagnetic devices with memristors. Appl. Phys. Lett. 96, 073504 (2010)CrossRefGoogle Scholar
  16. 16.
    Kim, H., Adhikari, S.P.: Memistor is not memristor. IEEE Circ. Syst. Mag. 12(1), (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Electronics EngineeringChonbuk National UniversityJeonjuRepublic of Korea

Personalised recommendations