Modeling Memristor–Based Circuit Networks on Crossbar Architectures

  • Ioannis Vourkas
  • Georgios Ch. SirakoulisEmail author


Almost 50 years have been completed ever since Leon Chua proposed the existence of a new class of passive circuit elements, which he called memristors and memristive devices. Nowadays, the unique electrical characteristics associated with them, concerning nanoscale dimensions, nonvolatility, and CMOS BEOL integration compatibility, along with the advantages of crossbar structures, have the potential to revolutionize computing architectures. Being associated with the totally nonlinear behavior of individual memristive elements, circuits of multiple memristors may work in very complicated way, quite difficult to predict, due to the polarity–dependent nonlinear variation in the memory resistance (memristance) of individual memristors. A well defined and effective memristor model for circuit design combined with a design paradigm which exploits the composite memristance of the resistive switching elements, based on well understood underlying logic design principles, would certainly accelerate research on new computing schemes using nanoscale circuits and systems. Towards this goal, we explore the dynamics of regular network geometries containing only memristive devices and present a memristor crossbar circuit design paradigm in which memristors are modeled using the quantum mechanical phenomenon of tunneling. We use this circuit model to test various logic circuit designs capable of universal computation. Finally, we develop and present a novel CMOS-like design paradigm for memristor–based crossbar circuits.


  1. 1.
    Chua, L.O.: Memristor - The missing circuit element. IEEE Trans. Circ. Theor. 18, 507–519 (1971)CrossRefGoogle Scholar
  2. 2.
    Williams, R.: How we found the missing memristor. IEEE Spectr. 45(2), 28–35 (2008)CrossRefGoogle Scholar
  3. 3.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  4. 4.
    Heath, J.R., Kuekes, P.J., Snider, G.S., Williams, R.S.: A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280, 1716–1721 (1998)CrossRefGoogle Scholar
  5. 5.
    Snider, G.S., Kuekes, P.J., Williams, R.S.: CMOS-like logic in defective, nanoscale crossbars. Nanotechnology 15, 881–891 (2004)CrossRefGoogle Scholar
  6. 6.
    Snider, G.S., Williams, R.S.: Nano/CMOS architectures using a field-programmable nanowire interconnect. Nanotechnology 18, 035204 (2007)CrossRefGoogle Scholar
  7. 7.
    Strukov, D.B., Likharev, K.K.: CMOL FPGA: a recongurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16, 888–900 (2005)CrossRefGoogle Scholar
  8. 8.
    Yang, J.J., Borghetti, J., Murphy, D., Stewart, D.R., Williams, R.S.: A family of electronically reconfigurable nanodevices. Adv. Mater. 21, 3754–3758 (2009)CrossRefGoogle Scholar
  9. 9.
    Schiff, L.I.: Quantum mechanics. In: International Series in Pure Applied Physics, 3rd edn, McGraw-Hill, 100–104 (1968)Google Scholar
  10. 10.
    Vourkas, I., Sirakoulis, G.C.: A novel design and modeling paradigm for memristor-based crossbar circuits. IEEE Trans. Nanotechnol. 11(6), 1151–1159 (2012)CrossRefGoogle Scholar
  11. 11.
    Easy Java Simulations:, Cited 15 June 2013
  12. 12.
    Stan, M.R., Franzon, P.D., Goldstein, S.C., Lach, J.C., Ziegler, M.M.: Molecular electronics: from devices and interconnect to circuits and architecture. Proc. IEEE 91, 1940–1957 (2003)CrossRefGoogle Scholar
  13. 13.
    SIA/Sematech: International Technology Roadmap for Semiconductors (ITRS). (2000) Cited 15 June 2013
  14. 14.
    Jo, S.H., Kim, K.-H., Lu, W.: Programmable resistance switching in nanoscale two-terminal devices. Nano Lett. 9(1), 496–500 (2009)CrossRefGoogle Scholar
  15. 15.
    Kim, K.-H., et al.: A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12, 389–395 (2012)CrossRefGoogle Scholar
  16. 16.
    Lu, W., Kim, K.-H., Chang, T., Gaba, S.: Two-terminal resistive switches (Memristors) for memory and logic applications. In: 16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011), pp. 217–223 (2011)Google Scholar
  17. 17.
    Rahaman, S.Z., et al.: Excellent resistive switching memory: Influence of GeOx in WOx mixture. In: VLSI Technology International Symposium of System and Applications (VLSI-TSA 2012), pp. 1–2 (2012)Google Scholar
  18. 18.
    Mondal, S., Her, J.-L., Chen, F.-H., Shih, S.-J., Pan, T.-M.: Improved resistance switching characteristics in Ti-Doped Yb2O3 for resistive nonvolatile memory devices. IEEE Electron Dev. Lett. 33(6), 1–3 (2012)CrossRefGoogle Scholar
  19. 19.
    Yu, S., Wu, Y., Jeyasingh, R., Kuzum, D., Philip Wong, H.-S.: An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Electron Dev. 58(8), 2729–2737 (2011)CrossRefGoogle Scholar
  20. 20.
    Kim, H.-D., An, H.-M., Lee, E.B., Kim, T.G.: Stable bipolar resistive switching characteristics and resistive switching mechanisms observed in Aluminum Nitride-based ReRAM devices. IEEE Trans. Electron Dev. 58(10), 3566–3573 (2011)CrossRefGoogle Scholar
  21. 21.
    Wong, H.-S.P., et al.: Metal-oxide RRAM. Proc. IEEE 100(6), 1951–1970 (2012)CrossRefGoogle Scholar
  22. 22.
    Ebong, I.E., Mazumder, P.: Self-controlled writing and erasing in a memristor crossbar memory. IEEE Trans. Nanotechnol. 10(6), 1454–1462 (2011)CrossRefGoogle Scholar
  23. 23.
    Eshraghian, K., et al.: Memristor MOS content addressable memory (MCAM): hybrid architecture for future high performance search engines. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(8), 1407–1416 (2011)CrossRefGoogle Scholar
  24. 24.
    Strukov, D.B., Williams, R.S.: Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. Proc. Nat. Academy Sci. 106(48), 20155–20158 (2009)CrossRefGoogle Scholar
  25. 25.
    Vourkas, I., Stathis, D., Sirakoulis, G.C., Hamdioui, S.: Alternative architectures towards reliable memristive crossbar memories. IEEE Trans. VLSI Syst. 24(1), 206–217 (2016)CrossRefGoogle Scholar
  26. 26.
    Papandroulidakis, G., Vourkas, I., Abusleme, A., Sirakoulis, G.C., Rubio, A.: Crossbar-based memristive logic-in-memory architecture. IEEE Trans. Nanotechnol. 16(3), 491–501 (2017)CrossRefGoogle Scholar
  27. 27.
    Williams, R.S.: Finding the missing memristor. Keynote talk at UC San Diego CNS Winter 2010 Research Review., Cited 15 June 2013
  28. 28.
    Joklekar, Y.N., Wolf, S.J.: The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30, 661–675 (2009)zbMATHCrossRefGoogle Scholar
  29. 29.
    Strukov, D.B., Borghetti, J.L., Williams, R.S.: Coupled ionic and electronic transport model of thin-lm semiconductor memristive behavior. Small 5(9), 1058–1063 (2009)CrossRefGoogle Scholar
  30. 30.
    Strukov, D.B., Williams, R.S.: Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A Mater. Sci. Process 94, 515–519 (2009)CrossRefGoogle Scholar
  31. 31.
    Di Ventra, M., Pershin, YuV, Chua, L.O.: Circuit elements with memory: memristors, memcapacitors and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)CrossRefGoogle Scholar
  32. 32.
    Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Pershin, Y.V., Di Ventra, M.: Practical approach to programmable analog circuits with memristors. IEEE Trans. Circuits Syst. I, Reg. Papers 57(8), 1857–1864 (2010)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Shin, S., Kim, K., Kang, S.: Memristor applications for programmable analog ICs. IEEE Trans. Nanotechnol. 10(2), 266–274 (2011)CrossRefGoogle Scholar
  35. 35.
    Liu, L., et al.: Engineering oxide resistive switching materials for memristive device application. Appl. Phys. A: Materials Sci. Process. 102(4), 991–996 (2011)CrossRefGoogle Scholar
  36. 36.
    Xu, N., et al.: Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories. Appl. Phys. Lett. 92, 232112 (2008)CrossRefGoogle Scholar
  37. 37.
    Vourkas, I., Batsos, A., Sirakoulis, G.C.: SPICE modeling of nonlinear memristive behavior. Int. J. Circ. Theor. Appl. 43(5), 553–565 (2015)CrossRefGoogle Scholar
  38. 38.
    Ziegler, M.M., Stan, M.R.: CMOS/nano co-design for crossbar-based molecular electronic systems. IEEE Trans. Nanotechnol. 2, 217–30 (2003)CrossRefGoogle Scholar
  39. 39.
    Yan, H., et al.: Programmable nanowire circuits for nanoprocessors. Nature Lett. 470, 240–244 (2011)CrossRefGoogle Scholar
  40. 40.
    Xia, Q.F., et al.: Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9, 3640–3645 (2009)CrossRefGoogle Scholar
  41. 41.
    Borghetti, J., et al.: A hybrid nanomemristor/transistor logic circuit capable of self-programming. PNAS 106(6), 1699–1703 (2009)CrossRefGoogle Scholar
  42. 42.
    Menzel, S., Böttger, U., Wimmer, M., Salinga, M.: Physics of the switching kinetics in resistive memories. Adv. Funct. Mater. 25, 6306–6325 (2015)CrossRefGoogle Scholar
  43. 43.
    Sassine, G., et al.: Interfacial versus filamentary resistive switching in TiO\(_2\) and HfO\(_2\) devices. J. Vac. Sci. Technol. B34(012202) (2016)Google Scholar
  44. 44.
    Campbell, K.: Self-directed channel memristor for high temperature operation. Microelectron. J. 1(1), 10–14 (2017)CrossRefGoogle Scholar
  45. 45.
    Pickett, M.D., et al.: Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106, 074508 (2009)CrossRefGoogle Scholar
  46. 46.
    Villena, M., Roldán, J., Jiménez-Molinos, F., Miranda, E., Suñé, J., Lanza, M.: SIM2RRAM: a physical model for RRAM devices simulation. J. Comput. Electron. 16(4), 1095–1120 (2017)Google Scholar
  47. 47.
    Vourkas, I., Sirakoulis, G.C.: Study of memristive elements networks. J. Nano Res. 27, 5–14 (2014)CrossRefGoogle Scholar
  48. 48.
    Linn, E., Rosezin, R., Kugeler, C., Waser, R.: Complementary resistive switches for passive nancrossbar memories. Nat. Mater. 9(5), 403–406 (2010)CrossRefGoogle Scholar
  49. 49.
    Liu, T., Kang, Y., Verma, M., Orlowski, M.K.: Witching characteristics of antiparallel resistive switches. IEEE Trans. Electr. Device Lett. 33(3), 429–431 (2012)CrossRefGoogle Scholar
  50. 50.
    Vourkas, I., Sirakoulis, G.C.: Memristor-based combinational circuits: a design methodology for encoders/decoders. Microelectr. J. 45(1), 59–70 (2014)CrossRefGoogle Scholar
  51. 51.
    Vourkas, I., Sirakoulis, G.C.: Emerging memristor-based logic circuit design approaches: a review. IEEE Circuits Syst. Mag. 16(3) (3rd quarter), 15–30 (2016)CrossRefGoogle Scholar
  52. 52.
    Kavehei, O., Al-Sarawi, S., Cho, K.-R., Eshraghian, K., Abbott, D.: An analytical approach for memristive nanoarchitectures. IEEE Trans. Nanotechnol. 11(2), 374–385 (2012)CrossRefGoogle Scholar
  53. 53.
    Dong, M., Zhong, L.: Nanowire crossbar logic and standard cell-based integration. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 17(8), 997–1007 (2009)CrossRefGoogle Scholar
  54. 54.
    Ho, Y., Huang, G.M., Li, P.: Dynamical properties and design analysis for nonvolatile memristor memories. IEEE Trans. Circuits Syst. I, Reg. Papers 58(4), 724–736 (2011)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Gomez, J., Vourkas, I., Abusleme, A., Rubio, A.: Resistive switching behavior seen from the energy point of view. 2018 IEEE International Symposium on On-Line Testing and Robust System Design (IOLTS), 147–150., Platja d’Aro, Costa Brava, Spain, July 2–4
  56. 56.
    Escudero-Lopez, M., Vourkas, I., Rubio, A., Moll, F.: Variability-tolerant memristor-based ratioed logic in crossbar array. IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH 2018). 13–18., Athens, Greece, July 18–19

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidad Técnica Federico Santa MaríaValparaísoChile
  2. 2.Democritus University of ThraceXanthiGreece

Personalised recommendations