Behavior of Multiple Memristor Circuits

  • Ram Kaji Budhathoki
  • Maheshwar Pd. Sah
  • Shyam Prasad Adhikari
  • Hyongsuk Kim
  • Leon ChuaEmail author


Memristor is a new circuit element defined by a state-dependent Ohm’s law between the memristor voltage and current. It has recently been successfully built, however, its electrical characteristics are not fully known yet. Like other circuit elements R, L and C, there could have various configurations of multiple memristors including serial and parallel connections in a variety of applications. When input voltage/current is supplied to a circuit with multiple memristors, behavior of the device becomes complicated and is difficult to predict. In this chapter, composite characteristics of the serial and parallel connections of memristors are investigated using both linear and nonlinear models. Also, the behavior of individual memristor is formulated mathematically and a general computation method of composite memristance for multiple memristor circuits of diverse configurations is proposed.


  1. 1.
    Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circ. Theor. CT–18(5), 507–519 (1971)CrossRefGoogle Scholar
  2. 2.
    Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Kim, H., Adhikari, S.P.: Memistor is not memristor. IEEE Circ. Syst. Mag. 12(1), 75–78 (2012)CrossRefGoogle Scholar
  4. 4.
    Wang, F.Y.: Memristor for introductory physics. arXIv: 0808.0286v1 [physics,Class-ph] (2008)
  5. 5.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)CrossRefGoogle Scholar
  6. 6.
    Kavehei, O., Eqbal, A., Kim, Y.S., Eshraghian, K., Al-sarawi, S.F., Abbott, D.: The fourth element: characteristics, modelling and electromagnic theory of the memristor. Proc. R. Soc. A Math. Phys. Eng. Sci. 466(2120), 2175–2202 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Rak, A., Cserey, G.: Macro modelling of memristors in SPICE. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 29(4), 632–636 (2010)Google Scholar
  8. 8.
    Biolek, Z., Biolek, D., Biolková, V.: SPICE model of memristor with nonlinear dopant drift. Radio Eng. 18(2), 210–214 (2009)zbMATHGoogle Scholar
  9. 9.
    Benderli, S., Wey, T.A.: On SPICE macromodelling of \(TiO_{2}\) memristors. Electron. Lett. 45(7), 377–379 (2009)CrossRefGoogle Scholar
  10. 10.
    Kim, H., Sah, M.P., Yang, C., Cho, S., Chua, L.O.: Memristor emulator for memristor circuit applications. IEEE Trans. Circuits Syst. I 59(10), 2422–2431 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Pershin, Y.V., Ventra, M.D.: Practical approach to programmable analog circuits with memristors. IEEE Trans. Circ. Syst. I Regul. Pap. 57(8), 1857–1864 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Multu, R., Karakulak, E.: Emulator circuit of \(TiO_{2}\) memristor with linear dopant drift made using analog multiplier. In: 2010 National Conference on Electrical, Electronics and Computer Engineering (ELECO), pp. 380–384 (2010)Google Scholar
  13. 13.
    Joglekar, Y., Wolf, S.: The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30, 661–675 (2009)CrossRefGoogle Scholar
  14. 14.
    Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O.: Neural synaptic weighting with a pulse-based memristor circuit. IEEE Trans. Circuits Syst. I 59(1), 148–158 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O.: Memristor bridge synapses. Proc. of the IEEE 100, 2061–2070 (2012)CrossRefGoogle Scholar
  16. 16.
    Sah, M.P., Yang, C., Kim, H., Chua, L.: A voltage mode memristor bridge synaptic circuit with memristor emulators. Sensors 12(3), 3587–3604 (2012)CrossRefGoogle Scholar
  17. 17.
    Linn, E., Rosezin, R., Kügeler, C., Waser, R.: Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9(5), 403–406 (2010)CrossRefGoogle Scholar
  18. 18.
    Kavehei, O., Al-Sarawi, S., Cho, K., Eshraghian, K., Abbott, D.: An analytical approach for memristive nanoarchitectures. IEEE Trans. Nanotech. 11(2), 374–385 (2012)CrossRefGoogle Scholar
  19. 19.
    Liu, T., Kang, Y., Verma, M., Orlowski, K.: Switching characteristics of antiparallel resistive switches. IEEE Electron Device Lett. 33(3), 429–431 (2012)CrossRefGoogle Scholar
  20. 20.
    Niu, D., Chen, Y., Xu, C., Xie, Y.: Impact of process variations on emerging memristor. In: 47th ACM/IEEE Design Automation Conference (DAC), pp. 877–882 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ram Kaji Budhathoki
    • 1
  • Maheshwar Pd. Sah
    • 1
  • Shyam Prasad Adhikari
    • 1
  • Hyongsuk Kim
    • 1
  • Leon Chua
    • 2
    Email author
  1. 1.Division of Electronics and Information EngineeringIntelligent Robots Research Center, Chonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Department of Electrical Engineering and Computer SciencesUniversity of CaliforniaBerkeleyUSA

Personalised recommendations