Resistive Switching Devices: Mechanism, Performance and Integration

  • Ming LiuEmail author
  • Qi Liu
  • Hangbing Lv
  • Shibing Long


Resistive switching devices or memristors are an emerging and greatly potential technology for future information technology, such as internet of things (IoT) and artificial intelligence (AI). In this chapter, we firstly review the resistive switching mechanisms, since its complex nature involving electronic and ionic kinetics serves as the basics for the applications on device and system levels. Secondly, the performance improvement methods from aspects of material, device and programming are summarized. Finally, we will present the integration technology and point out issues that should be addressed in 2D and 3D architectures.


  1. 1.
    Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009)CrossRefGoogle Scholar
  2. 2.
    Schindler, C., Weides, M., Kozicki, M.N., Waser, R.: Low current resistive switching in Cu–SiO2 cells. Appl. Phys. Lett. 92, 122910-122910-3 (2008)CrossRefGoogle Scholar
  3. 3.
    Terabe, K., Hasegawa, T., Nakayama, T., Aono, M.: Quantized conductance atomic switch. Nature 433 (2005)CrossRefGoogle Scholar
  4. 4.
    Tappertzhofen, S., Mundelein, H., Valov, I., Waser, R.: Nanoionic transport and electrochemical reactions in resistively switching silicon dioxide. Nanoscale 4, 3040–3043 (2012)CrossRefGoogle Scholar
  5. 5.
    Budevski, E., Staikov, G., Lorenz, W.J.: Electrocrystallization: nucleation and growth phenomena. Electrochim. Acta 45, 2559–2574 (2000)CrossRefGoogle Scholar
  6. 6.
    Liang, L., Qi, Y., Xue, F., Bhattacharya, S., Harris, S.J., Chen, L.Q.: Nonlinear phase-field model for electrode-electrolyte interface evolution. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 86, 051609 (2012)CrossRefGoogle Scholar
  7. 7.
    Liang, L., Chen, L.Q.: Nonlinear phase field model for electrodeposition in electrochemical systems. Appl. Phys. Lett. 105, 1457–1459 (2014)Google Scholar
  8. 8.
    Hasegawa, T., Terabe, K., Tsuruoka, T., Aono, M.: Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers. Adv. Mater. 24, 252–267 (2012)CrossRefGoogle Scholar
  9. 9.
    Hollmer, S., Gilbert, N., Dinh, J., Lewis, D., Derhacobian, N.: A high performance and low power logic CMOS compatible embedded 1 Mb CBRAM non-volatile macro. In: 2011 3rd IEEE International Memory Workshop (IMW), pp. 1–4 (2011)Google Scholar
  10. 10.
    Choi, S.J., Park, G.S., Kim, K.H., Cho, S., Yang, W.Y., Li, X.S., et al.: In situ observation of voltage-induced multilevel resistive switching in solid electrolyte memory. Adv. Mater. 23, 3272–3277 (2011)CrossRefGoogle Scholar
  11. 11.
    Fujii, T., Arita, M., Takahashi, Y., Fujiwara, I.: In situ transmission electron microscopy analysis of conductive filament during solid electrolyte resistance switching. Appl. Phys. Lett. 98, 212104 (2011)CrossRefGoogle Scholar
  12. 12.
    Xu, Z., Bando, Y., Wang, W., Bai, X., Golberg, D.: Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. ACS Nano 4, 2515–2522 (2010)CrossRefGoogle Scholar
  13. 13.
    Li, Y., Long, S., Liu, Q., Lv, H., Liu, M.: Resistive switching performance improvement via modulating nanoscale conductive filament, involving the application of two-dimensional layered materials. Small, 18 Apr 2017Google Scholar
  14. 14.
    Zhao, X., Liu, S., Niu, J., Liao, L., Liu, Q., Xiao, X., et al.: Confining cation injection to enhance CBRAM performance by nanopore graphene layer. Small 13, 1603948 (2017)CrossRefGoogle Scholar
  15. 15.
    Liu, Q., Long, S., Lv, H., Wang, W., Niu, J., Huo, Z., et al.: Controllable growth of nanoscale conductive filaments in solid-electrolyte-based reram by using a metal nanocrystal covered bottom electrode. ACS Nano 4, 6162–6168 (2010)CrossRefGoogle Scholar
  16. 16.
    Sun, H., Liu, Q., Li, C., Long, S., Lv, H., Bi, C., et al.: Direct observation of conversion between threshold switching and memory switching induced by conductive filament morphology. Adv. Func. Mater. 24, 5679–5686 (2014)CrossRefGoogle Scholar
  17. 17.
    Liu, S., Lu, N., Zhao, X., Xu, H., Banerjee, W., Lv, H., et al.: Eliminating negative-set behavior by suppressing nanofilament overgrowth in cation-based memory. Adv. Mater. 28, 10623–10629 (2016)CrossRefGoogle Scholar
  18. 18.
    Wang, Y., Liu, Q., Long, S., Wang, W., Wang, Q., Zhang, M., et al.: Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology 21, 045202 (2010)CrossRefGoogle Scholar
  19. 19.
    Liu, Q., Sun, J., Lv, H., Long, S., Yin, K., Wan, N., et al.: Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24, 1844–1849 (2012)CrossRefGoogle Scholar
  20. 20.
    Nayak, A., Wang, Q., Itoh, Y., Tsuruoka, T., Hasegawa, T., Boodhoo, L., et al.: Position detection and observation of a conducting filament hidden under a top electrode in a Ta2O5-based atomic switch. Nanotechnology 26, 145702 (2015)CrossRefGoogle Scholar
  21. 21.
    Busby, Y., Nau, S., Sax, S., List-Kratochvil, E.J.W., Novak, J., Banerjee, R., et al.: Direct observation of conductive filament formation in Alq3 based organic resistive memories. J. Appl. Phys. 118, 075501 (2015)CrossRefGoogle Scholar
  22. 22.
    Han, S.-T., Hu, L., Wang, X., Zhou, Y., Zeng, Y.-J., Ruan, S., et al.: Black phosphorus quantum dots with tunable memory properties and multilevel resistive switching characteristics. Adv. Sci. 4, 1600435 (2017)CrossRefGoogle Scholar
  23. 23.
    Son, D.I., Kim, T.W., Shim, J.H., Jung, J.H., Lee, D.U., Lee, J.M., et al.: Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer. Nano Lett. 10, 2441–2447 (2010)CrossRefGoogle Scholar
  24. 24.
    Son, D.I., Shim, J.H., Park, D.H., Jung, J.H., Lee, J.M., Park, W.I., et al.: Polymer-ultrathin graphite sheet-polymer composite structured flexible nonvolatile bistable organic memory devices. Nanotechnology 22, 295203 (2011)CrossRefGoogle Scholar
  25. 25.
    Jo, S.H., Kim, K.-H., Lu, W.: High-density crossbar arrays based on a Si memristive system. Nano Lett. 9, 870–874 (2009)CrossRefGoogle Scholar
  26. 26.
    Jo, S.H., Lu, W.: Nonvolatile resistive switching devices based on nanoscale metal/amorphous silicon/crystalline silicon junctions. In: MRS Proceedings, vol. 997 (2011)Google Scholar
  27. 27.
    Hyun, J.S., Wei, L.: Ag/a-Si:H/c-Si resistive switching nonvolatile memory devices. In: 2006 IEEE Nanotechnology Materials and Devices Conference, pp. 116–117 (2006)Google Scholar
  28. 28.
    Li, M., Zhuge, F., Zhu, X., Yin, K., Wang, J., Liu, Y., et al.: Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches. Nanotechnology 21, 425202 (2010)CrossRefGoogle Scholar
  29. 29.
    Shi, T., Yang, R., Guo, X.: Coexistence of analog and digital resistive switching in BiFeO3-based memristive devices. Solid State Ionics 296, 114–119 (2016)CrossRefGoogle Scholar
  30. 30.
    Qian, K., Tay, R.Y., Nguyen, V.C., Wang, J., Cai, G., Chen, T., et al.: Hexagonal boron nitride thin film for flexible resistive memory applications. Adv. Func. Mater. 26, 2176–2184 (2016)CrossRefGoogle Scholar
  31. 31.
    Shi, T., Chen, Y., Guo, X.: Defect chemistry of alkaline earth metal (Sr/Ba) titanates. Prog. Mater Sci. 80, 77–132 (2016)CrossRefGoogle Scholar
  32. 32.
    Waser, R.: Bulk conductivity and defect chemistry of acceptor-doped strontium titanate in the quenched state. J. Am. Ceram. Soc. 74, 1934–1940 (1991)CrossRefGoogle Scholar
  33. 33.
    Wong, H.S.P., Lee, H.-Y., Yu, S., Chen, Y.-S., Wu, Y., Chen, P.-S., et al.: Metal-oxide RRAM. In: Proceedings of the IEEE, vol. 100, pp. 1951–1970, Jun 2012Google Scholar
  34. 34.
    Fujii, T., Kawasaki, M., Sawa, A., Akoh, H., Kawazoe, Y., Tokura, Y.: Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3. Appl. Phys. Lett. 86, 2749 (2005)Google Scholar
  35. 35.
    Sawa, A., Fujii, T., Kawasaki, M., Tokura, Y.: Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85, 4073–4075 (2004)CrossRefGoogle Scholar
  36. 36.
    Baek, K., Park, S., Park, J., Kim, Y.-M., Hwang, H., Oh, S.H.: In situ TEM observation on the interface-type resistive switching by electrochemical redox reactions at a TiN/PCMO interface. Nanoscale 9, 582–593 (2017)CrossRefGoogle Scholar
  37. 37.
    Fujii, T., Kawasaki, M., Sawa, A., Kawazoe, Y., Akoh, H., Tokura, Y.: Electrical properties and colossal electroresistance of heteroepitaxial SrRuO3/SrTi1−xNbxO3 (0.0002 < x < 0.02) Schottky junctions. Phys. Rev. B, 75, 5101(1–7) (2007)Google Scholar
  38. 38.
    Janousch, M., Meijer, G.I., Staub, U., Delley, B., Karg, S.F., Andreasson, B.P.: Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory. Adv. Mater. 19, 2232 (2007)CrossRefGoogle Scholar
  39. 39.
    Kalaev, D., Yalon, E., Riess, I.: On the direction of the conductive filament growth in valence change memory devices during electroforming. Solid State Ionics 276, 9–17 (2015)CrossRefGoogle Scholar
  40. 40.
    Kwon, D.-H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H., et al.: Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010)CrossRefGoogle Scholar
  41. 41.
    Szot, K., Speier, W., Bihlmayer, G., Waser, R.: Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5 (2006)CrossRefGoogle Scholar
  42. 42.
    Nail, C., Molas, G., Blaise, P., Piccolboni, G., Sklenard, B., Cagli, B., et al.: Understanding RRAM endurance, retention and window margin trade-off using experimental results and simulations. In: 2016 IEEE International Electron Devices Meeting (IEDM), pp. 4.5.1–4.5.4 (2016)Google Scholar
  43. 43.
    Shi, T., Yin, X.-B., Yang, R., Guo, X.: Pt/WO3/FTO memristive devices with recoverable pseudo-electroforming for time-delay switches in neuromorphic computing. Phys. Chem. Chem. Phys. 18, 9338–9343 (2016)CrossRefGoogle Scholar
  44. 44.
    Lai, Y.-C., Wang, Y.-X., Huang, Y.-C., Lin, T.-Y., Hsieh, Y.-P., Yang, Y.-J., et al.: Rewritable, moldable, and flexible sticker-type organic memory on arbitrary substrates. Adv. Func. Mater. 24, 1430–1438 (2014)CrossRefGoogle Scholar
  45. 45.
    Khurana, G., Misra, P., Katiyar, R.S.: Multilevel resistive memory switching in graphene sandwiched organic polymer heterostructure. Carbon 76, 341–347 (2014)CrossRefGoogle Scholar
  46. 46.
    Yang, Y., Yuan, G., Yan, Z., Wang, Y., Lu, X., Liu, J.M.: Flexible, semitransparent, and inorganic resistive memory based on BaTi0.95 Co0.05O3 film. Adv. Mater. 27 Apr 2017Google Scholar
  47. 47.
    Pan, C., Ji, Y., Xiao, N., Hui, F., Tang, K., Guo, Y., et al.: Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Func. Mater. 27, 1604811 (2017)CrossRefGoogle Scholar
  48. 48.
    Yun, D.Y., Park, H.M., Kim, S.W., Kim, S.W., Kim, T.W.: Enhancement of memory margins for stable organic bistable devices based on graphene-oxide layers due to embedded CuInS2 quantum dots. Carbon 75, 244–248 (2014)CrossRefGoogle Scholar
  49. 49.
    Wang, C., He, W., Tong, Y., Zhang, Y., Huang, K., Song, L., et al.: Memristive devices with highly repeatable analog states boosted by graphene quantum dots. Small, 15 Mar 2017Google Scholar
  50. 50.
    Shinde, S.M., Kalita, G., Tanemura, M.: Fabrication of poly(methyl methacrylate)-MoS2/graphene heterostructure for memory device application. J. Appl. Phys. 116 (2014)CrossRefGoogle Scholar
  51. 51.
    Xu, X.-Y., Yin, Z.-Y., Xu, C.-X., Dai, J., Hu, J.-G.: Resistive switching memories in MoS2 nanosphere assemblies. Appl. Phys. Lett. 104, 033504 (2014)CrossRefGoogle Scholar
  52. 52.
    Hao, C., Wen, F., Xiang, J., Yuan, S., Yang, B., Li, L., et al.: Liquid-exfoliated black phosphorous nanosheet thin films for flexible resistive random access memory applications. Adv. Func. Mater. (2016)Google Scholar
  53. 53.
    Standley, B., Bao, W., Zhang, H., Bruck, J., Lau, C.N., Bockrath, M.: Graphene-based atomic-scale switches. Nano Lett. 8, 3345–3349 (2008)CrossRefGoogle Scholar
  54. 54.
    Li, Y., Sinitskii, A., Tour, J.M.: Electronic two-terminal bistable graphitic memories. Nat. Mater. 7, 966–971 (2008)CrossRefGoogle Scholar
  55. 55.
    Hui, F., Grustan-Gutierrez, E., Long, S., Liu, Q., Ott, A.K., A. Ferrari, C., et al.: Graphene and related materials for resistive random access memories. Adv. Electron. Mater. 1600195 (2017)Google Scholar
  56. 56.
    Yao, J., Lin, J., Dai, Y., Ruan, G., Yan, Z., Li, L., et al.: Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene. Nat. Commun. 3, 1101 (2012)CrossRefGoogle Scholar
  57. 57.
    Rani, J.R., Oh, S.-I., Woo, J.M., Jang, J.-H.: Low voltage resistive memory devices based on graphene oxide–iron oxide hybrid. Carbon 94, 362–368 (2015)CrossRefGoogle Scholar
  58. 58.
    Chien, W.C., Chen, Y.R., Chen, Y.C., Chuang, A.T.H., Lee, F.M., Lin, Y.Y., et al.: A forming-free WOx resistive memory using a novel self-aligned field enhancement feature with excellent reliability and scalability. In: Proceedings of the 2010 International Electron Devices Meeting: December 6–8 2010; San Francisco, USA, IEEE, New York (2010)Google Scholar
  59. 59.
    Kim, H.J., Yoon, K.J., Park, T.H., Kim, H.J., Kwon, Y.J., Shao, X.L., et al.: Filament shape dependent reset behavior governed by the interplay between the electric field and thermal effects in the Pt/TiO2/Cu electrochemical metallization device. Adv. Electron. Mater. 3, 1600404 (2017)CrossRefGoogle Scholar
  60. 60.
    Chang, S.H., Lee, J.S., Chae, S.C., Lee, S.B., Liu, C., Kahng, B., et al.: Occurrence of both unipolar memory and threshold resistance switching in a NiO film. Phys. Rev. Lett. 102, 026801 (2009)CrossRefGoogle Scholar
  61. 61.
    Hsiung, C.P., Liao, H.W., Gan, J.Y., Wu, T.B., Hwang, J.C., Chen, F., et al.: Formation and instability of silver nanofilament in Ag-based programmable metallization cells. ACS Nano 4, 5414–5420 (2010)CrossRefGoogle Scholar
  62. 62.
    Wang, Z., Joshi, S., Savel’ev, S.E., Jiang, H., Midya, R., Lin, P., et al.: Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. vol. Advance online publication (2016)Google Scholar
  63. 63.
    Liu, Q., Guan, W., Long, S., Jia, R., Liu, M., Chen, J.: Resistive switching memory effect of ZrO films with Zr+ implanted. Appl. Phys. Lett. 92, 012117 (2008)CrossRefGoogle Scholar
  64. 64.
    de Boer, R.W.I., Morpurgo, A.F.: Influence of surface traps on space-charge limited current. Phys. Rev. B 72 (2005)Google Scholar
  65. 65.
    Kim, D.S., Kim, Y.H., Lee, C.E., Kim, Y.T.: Colossal electroresistance mechanism in a Au/Pr0.7Ca0.3MnO3/Pt sandwich structure: evidence for a mott transition. Phys. Rev. B. 74 (2006)Google Scholar
  66. 66.
    Fors, R., Khartsev, S.I., Grishin, A.M.: Giant resistance switching in metal-insulator-manganite junctions: evidence for Mott transition. Phys. Rev. B. 71, 45305 (2005)Google Scholar
  67. 67.
    Meijer, G.I., Staub, U., Janousch, M., Johnson, S.L., Delley, B., Neisius, T.: Valence states of Cr and the insulator-to-metal transition in Cr-doped SrTiO3. Phys. Rev. B. 72, 5102 (2005)Google Scholar
  68. 68.
    Yang, C.H., Seidel, J., Kim, S.Y., Rossen, P.B., Yu, P., Gajek, M., et al.: Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 8, 485–493 (2009)CrossRefGoogle Scholar
  69. 69.
    Rozenberg, M.J., Inoue, I.H., Sánchez, M.J.: Strong electron correlation effects in nonvolatile electronic memory devices. Appl. Phys. Lett. 88, 033510 (2006)CrossRefGoogle Scholar
  70. 70.
    Rozenberg, M.J., Inoue, I.H., Sánchez, M.J.: Nonvolatile memory with multilevel switching: a basic model. Phys. Rev. Lett. 92, 178302 (2004)CrossRefGoogle Scholar
  71. 71.
    Jeong, D.S., Hwang, C.S.: Tunneling-assisted Poole-Frenkel conduction mechanism in HfO2 thin films. J. Appl. Phys. 98, 113701 (2005)CrossRefGoogle Scholar
  72. 72.
    Chih-Yi, L., Pei-Hsun, W., Wang, A., Wen-Yueh, J., Jien-Chen, Y., Kuang-Yi, C., et al.: Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film. IEEE Electron Device Lett. 26, 351–353 (2005)CrossRefGoogle Scholar
  73. 73.
    Chiu, F.-C.: A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 1–18 (2014)Google Scholar
  74. 74.
    Meyer, R., Contreras, J.R., Petraru, A., Kohlstedt, H.: On a novel ferro resistive random access memory (FRRAM): basic model and first experiments. Integr. Ferroelectr. 64, 77–88 (2004)CrossRefGoogle Scholar
  75. 75.
    Yao, L., Inkinen, S., van Dijken, S.: Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La2/3Sr1/3MnO3. Nat. Commun. 8, 14544 (2017)CrossRefGoogle Scholar
  76. 76.
    Wong, H.S.P., Raoux, S., Kim, S., Liang, J., Reifenberg, J.P., Rajendran, B., et al.: Phase change memory. Proc. IEEE 98, 2201–2227 (2010)CrossRefGoogle Scholar
  77. 77.
    Aga, F.G., Woo, J., Lee, S., Song, J., Park, J., Park, J., et al.: Retention modeling for ultra-thin density of Cu-based conductive bridge random access memory (CBRAM). AIP Adv. 6, 025203 (2016)CrossRefGoogle Scholar
  78. 78.
    Chen, Y.Y., Degraeve, R., Govoreanu, B., Clima, S., Goux, L., Fantini, A., et al.: Postcycling LRS retention analysis in HfO2/Hf RRAM 1T1R device. IEEE Electron Device Lett. 34, 626–628 (2013)CrossRefGoogle Scholar
  79. 79.
    Chai, Z., Ma, J., Zhang, W., Govoreanu, B., Simoen, E., Zhang, J.F., et al.: RTN-based defect tracking technique: experimentally probing the spatial and energy profile of the critical filament region and its correlation with HfO2 RRAM switching operation and failure mechanism. Paper presented at the 2016 IEEE Symposium on VLSI Technology (2016)Google Scholar
  80. 80.
    Guan, W., Liu, M., Long, S., Liu, Q., Wang, W.: On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt. Appl. Phys. Lett. 93, 223506 (2008)CrossRefGoogle Scholar
  81. 81.
    Guan, W., Long, S., Liu, Q., Liu, M., Wang, W.: Nonpolar nonvolatile resistive switching in Cu doped ZrO2. IEEE Electron Device Lett. 29, 434–437 (2008)CrossRefGoogle Scholar
  82. 82.
    Liu, Q., Guan, W., Long, S., Liu, M., Zhang, S., Wang, Q., et al.: Resistance switching of Au-implanted-ZrO2 film for nonvolatile memory. J. Appl. Phys. 104, 114514 (2008)CrossRefGoogle Scholar
  83. 83.
    Liu, Q., Dou, C., Wang, Y., Long, S., Wang, W., Liu, M., et al.: Formation of multiple conductive filaments in the Cu/ZrO2:Cu/Pt device. Appl. Phys. Lett. 95, 023501 (2009)CrossRefGoogle Scholar
  84. 84.
    Liu, Q., Long, S., Wang, W., Zuo, Q., Zhang, S., Chen, J., et al.: Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions. IEEE Electron Device Letters 30, 1335–1337 (2009)CrossRefGoogle Scholar
  85. 85.
    Zhao, L., Park, S.-G., Magyari-Köpe, B., Nishi, Y.: Dopant selection rules for desired electronic structure and vacancy formation characteristics of TiO2 resistive memory. Appl. Phys. Lett. 102, 083506 (2013)CrossRefGoogle Scholar
  86. 86.
    Tan, T., Guo, T., Liu, Z.: Au doping effects in HfO2-based resistive switching memory. J. Alloy. Compd. 610, 388–391 (2014)CrossRefGoogle Scholar
  87. 87.
    Qiang, Z., Maoxiu, Z., Wei, Z., Qi, L., Xiaofeng, L., Ming, L., et al.: Effects of interaction between defects on the uniformity of doping HfO2-based RRAM: a first principle study. J. Semicond. 34, 032001 (2013)CrossRefGoogle Scholar
  88. 88.
    Tsunoda, K., Kinoshita, K., Noshiro, H., Yamazaki, Y., Iizuka, T., Ito, Y., et al.: Low power and high speed switching of Ti-doped NiO ReRAM under the unipolar voltage source of less than 3 VGoogle Scholar
  89. 89.
    Tan, T., Guo, T., Chen, X., Li, X., Liu, Z.: Impacts of Au-doping on the performance of Cu/HfO2/Pt RRAM devices. Appl. Surf. Sci. 317, 982–985 (2014)CrossRefGoogle Scholar
  90. 90.
    Syu, Y.-E., Chang, T.-C., Tsai, T.-M., Chang, G.-W., Chang, K.-C., Tai, Y.-H., et al.: Silicon introduced effect on resistive switching characteristics of WOX thin films. Appl. Phys. Lett. 100, 022904 (2012)CrossRefGoogle Scholar
  91. 91.
    Sun, B., Zhang, X., Zhou, G., Zhang, C., Li, P., Xia, Y., et al.: Effect of Cu ions assisted conductive filament on resistive switching memory behaviors in ZnFe2O4-based devices. J. Alloy. Compd. 694, 464–470 (2017)CrossRefGoogle Scholar
  92. 92.
    Zhuge, F., Peng, S., He, C., Zhu, X., Chen, X., Liu, Y., et al.: Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formationrupture of Cu filaments. Nanotechnology 22, 275204 (2011)CrossRefGoogle Scholar
  93. 93.
    Mondal, S., Chen, H.-Y., Her, J.-L., Ko, F.-H., Pan, T.-M.: Effect of Ti doping concentration on resistive switching behaviors of Yb2O3 memory cell. Appl. Phys. Lett. 101, 083506 (2012)CrossRefGoogle Scholar
  94. 94.
    Lv, H., Wan, H., Tang, T.: Improvement of resistive switching uniformity by introducing a thin GST interface layer. IEEE Electron Device Lett. 31, 978–980 (2010)CrossRefGoogle Scholar
  95. 95.
    Yoon, J., Choi, H., Lee, D., Park, J.B., Lee, J., Seong, D.J., et al.: Excellent switching uniformity of Cu-doped MoOx/GdOx bilayer for nonvolatile memory applications. IEEE Electron Device Lett. 30, 457–459 (2009)CrossRefGoogle Scholar
  96. 96.
    Likharev, K.K.: Layered tunnel barriers for nonvolatile memory devices. Appl. Phys. Lett. 73, 2137–2139 (1998)CrossRefGoogle Scholar
  97. 97.
    Inoue, I.H., Yasuda, S., Akinaga, H., Takagi, H.: Nonpolar resistance switching of metal binary-transition-metal oxides metal sandwiches Homogeneous inhomogeneous transition of current distribution. Phys. Rev. B 77, 035105 (2008)CrossRefGoogle Scholar
  98. 98.
    Guan, W., Long, S., Liu, M., Liu, Q., Hu, Y., Li, Z., et al.: Modeling of retention characteristics for metal and semiconductor nanocrystal memories. Solid-State Electron. 51, 806–811 (2007)CrossRefGoogle Scholar
  99. 99.
    Guan, W., Long, S., Liu, M., Li, Z., Hu, Y., Liu, Q.: Fabrication and charging characteristics of MOS capacitor structure with metal nanocrystals embedded in gate oxide. J. Phys. D Appl. Phys. 40, 2754–2758 (2007)CrossRefGoogle Scholar
  100. 100.
    Tsai, Y.-T., Chang, T.-C., Lin, C.-C., Chen, S.-C., Chen, C.-W., Sze, S.M., et al.: Influence of nanocrystals on resistive switching characteristic in binary metal oxides memory devices. Electrochem. Solid-State Lett. 14, H135–H138 (2011)CrossRefGoogle Scholar
  101. 101.
    Wang, Z.Q., Xu, H.Y., Zhang, L., Li, X.H., Ma, J.G., Zhang, X.T., et al.: Performance improvement of resistive switching memory achieved by enhancing local-electric-field near electromigrated Ag-nanoclusters. Nanoscale 5, 4490 (2013)CrossRefGoogle Scholar
  102. 102.
    Bousoulas, P., Stathopoulos, S., Tsialoukis, D., Tsoukalas, D.: Low-power and highly uniform 3-b multilevel switching in forming free TiO2−x-based RRAM with embedded Pt nanocrystals. IEEE Electron Device Lett. 37, 874–877 (2016)CrossRefGoogle Scholar
  103. 103.
    Sun, H., Lv, H., Liu, Q., Long, S., Wang, M., Xie, H., et al.: Overcoming the dilemma between RESET current and data retention of RRAM by lateral dissolution of conducting filament. IEEE Electron Device Lett. 34, 873–875 (2013)CrossRefGoogle Scholar
  104. 104.
    Xie, F.-Q., Nittler, L., Obermair, C., Schimmel, T.: Gate-controlled atomic quantum switch. Phys. Rev. Lett. 93, 128303 (2004)CrossRefGoogle Scholar
  105. 105.
    Xia, Q., Pickett, M.D., Yang, J.J., Li, X., Wu, W., Medeiros-Ribeiro, G., et al.: Two- and three-terminal resistive switches nanometer-scale memristors and memistors. Adv. Func. Mater. 21, 2660–2665 (2011)CrossRefGoogle Scholar
  106. 106.
    Banno, N., Sakamoto, T., Hasegawa, T., Terabe, K., Aono, M.: Effect of ion diffusion on switching voltage of solid-electrolyte nanometer switch. Jpn. J. Appl. Phys. 45, 3666–3668 (2006)CrossRefGoogle Scholar
  107. 107.
    Tian, H., Zhao, H., Wang, X.-F., Xie, Q.-Y., Chen, H.-Y., Mohammad, M.A., et al.: In situ tuning of switching window in a gate-controlled bilayer graphene-electrode resistive memory device. Adv. Mater. 27, 7767–7774 (2015)CrossRefGoogle Scholar
  108. 108.
    Sangwan, V.K., Jariwala, D., Kim, I.S., Chen, K.-S., Marks, T.J., Lauhon, L.J., et al.: Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 10, 403–406 (2015)CrossRefGoogle Scholar
  109. 109.
    Zhu, L.Q., Wan, C.J., Guo, L.Q., Shi, Y., Wan, Q.: Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5, 3158 (2014)CrossRefGoogle Scholar
  110. 110.
    Wang, X., Xie, W., Xu, J.-B.: Graphene based non-volatile memory devices. Adv. Mater. 26, 5496–5503 (2014)CrossRefGoogle Scholar
  111. 111.
    Porro, S., Accornero, E., Pirri, C.F., Ricciardi, C.: Memristive devices based on graphene oxide. Carbon 85, 383–396 (2015)CrossRefGoogle Scholar
  112. 112.
    He, C., Shi, Z., Zhang, L., Yang, W., Yang, R., Shi, D., et al.: Multilevel resistive switching in planar graphene/SiO2 nanogap structures. ACS Nano 6, 4214–4221 (2012)CrossRefGoogle Scholar
  113. 113.
    He, C., Li, J., Wu, X., Chen, P., Zhao, J., Yin, K., et al.: Tunable electroluminescence in planar graphene/SiO2 memristors. Adv. Mater. 25, 5593–5598 (2013)CrossRefGoogle Scholar
  114. 114.
    Bai, Y., Wu, H., Wang, K., Wu, R., Song, L., Li, T., et al.: Stacked 3D RRAM array with graphene/CNT as edge electrodes. Sci. Rep. 5, 13785 (2015)CrossRefGoogle Scholar
  115. 115.
    Lee, S., Sohn, J., Jiang, Z., Chen, H.-Y., Wong, H.-S.P.: Metal oxide-resistive memory using graphene-edge electrodes. Nat. Commun. 6, 8407 (2015)CrossRefGoogle Scholar
  116. 116.
    Zhang, H., Bao, W., Zhao, Z., Huang, J.-W., Standley, B., Liu, G., et al.: Visualizing electrical breakdown and ON/OFF states in electrically switchable suspended graphene break junctions. Nano Lett. 12, 1772–1775 (2012)CrossRefGoogle Scholar
  117. 117.
    Zhao, H., Tu, H., Wei, F., Du, J.: Highly transparent dysprosium oxide-based RRAM with multilayer graphene electrode for low-power nonvolatile memory application. IEEE Trans. Electron Devices 61, 1388–1393 (2014)CrossRefGoogle Scholar
  118. 118.
    He, C.L., Zhuge, F., Zhou, X.F., Li, M., Zhou, G.C., Liu, Y.W., et al.: Nonvolatile resistive switching in graphene oxide thin films. Appl. Phys. Lett. 95, 232101 (2009)CrossRefGoogle Scholar
  119. 119.
    Liu, G., Chen, Y., Li, R.-W., Zhang, B., Kang, E.-T., Wang, C., et al.: Resistance-switchable graphene oxide-polymer nanocomposites for molecular electronics. Chem. Electro. Chem. 1, 514–519 (2014)Google Scholar
  120. 120.
    Liu, J., Yin, Z., Cao, X., Zhao, F., Wang, L., Huang, W., et al.: Fabrication of flexible, all-reduced graphene oxide non-volatile memory devices. Adv. Mater. 25, 233–238 (2013)CrossRefGoogle Scholar
  121. 121.
    Zhuge, F., Fu, B., Cao, H.: Advances in resistive switching memories based on graphene oxide. New Prog. Graphene Res. 7, 185–206 (2013)Google Scholar
  122. 122.
    Yin, Z., Zeng, Z., Liu, J., He, Q., Chen, P., Zhang, H.: Memory devices using a mixture of MoS2 and graphene oxide as the active Layer. Small 9, 727–731 (2013)CrossRefGoogle Scholar
  123. 123.
    Puglisi, F.M., Larcher, L., Pan, C., Xiao, N., Shi, Y., Hui, F., et al.: 2D h-BN based RRAM devices. In: 2016 IEEE International Electron Devices Meeting (IEDM), pp. 34.8.1–34.8.4 (2016)Google Scholar
  124. 124.
    Long, S., Cagli, C., Ielmini, D., Liu, M., Suñé, J.: Analysis and modeling of resistive switching statistics. J. Appl. Phys. 111, 074508 (2012)CrossRefGoogle Scholar
  125. 125.
    Chen, B., Gao, B., Sheng, S.W., Liu, L.F., Liu, X.Y., Chen, Y.S., et al.: A novel operation scheme for oxide-based resistive-switching memory devices to achieve controlled switching behaviors. IEEE Electron Device Lett. 32, 282–284 (2011)CrossRefGoogle Scholar
  126. 126.
    Lian, W., Lv, H., Liu, Q., Long, S., Wang, W., Wang, Y., et al.: Improved resistive switching uniformity in Cu/HfO2/Pt devices by using current sweeping mode. IEEE Electron Device Lett. 32, 1053–1055 (2011)CrossRefGoogle Scholar
  127. 127.
    Kinoshita, K., Tsunoda, K., Sato, Y., Noshiro, H., Yagaki, S., Aoki, M., et al.: Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance. Appl. Phys. Lett. 93, 033506 (2008)CrossRefGoogle Scholar
  128. 128.
    Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L.: Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56, 186–192 (2009)CrossRefGoogle Scholar
  129. 129.
    Paskaleva, A., Atanassova, E., Novkovski, N.: Constant current stress of Ti-doped Ta2O5 on nitrided Si. J. Phys. D Appl. Phys. 42, 025105 (2009)CrossRefGoogle Scholar
  130. 130.
    Xu, X., Lv, H., Liu, H., Gong, T., Wang, G., Zhang, M., et al.: Superior retention of low-resistance state in conductive bridge random access memory with single filament formation. IEEE Electron Device Lett. 36, 129–131 (2015)CrossRefGoogle Scholar
  131. 131.
    Liu, H., Lv, H., Yang, B., Xu, X., Liu, R., Liu, Q., et al.: Uniformity improvement in 1T1R RRAM with gate voltage ramp programming. IEEE Electron Device Lett. 35, 1224–1226 (2014)CrossRefGoogle Scholar
  132. 132.
    Lv, H., Xu, X., Sun, P., Liu, H., Luo, Q., Liu, Q., et al.: Atomic view of filament growth in electrochemical memristive elements. Sci. Rep. 5, 13311 (2015)CrossRefGoogle Scholar
  133. 133.
    Wang, G., Long, S., Zhang, M., Li, Y., Xu, X., Liu, H., et al.: Operation methods of resistive random access memory. Sci. China Technol. Sci. 57, 2295–2304 (2014)CrossRefGoogle Scholar
  134. 134.
    Lee, S., Lee, D., Woo, J., Cha, E., Song, J., Park, J., et al.: Selector-less ReRAM with an excellent non-linearity and reliability by the band-gap engineered multi-layer titanium oxide and triangular shaped AC pulse. In: 2013 IEEE International Electron Devices Meeting (IEDM), pp. 10.6.1–10.6.4 (2013)Google Scholar
  135. 135.
    Wang, G., Long, S., Yu, Z., Zhang, M., Ye, T., Li, Y., et al.: Improving resistance uniformity and endurance of resistive switching memory by accurately controlling the stress time of pulse program operation. Appl. Phys. Lett. 106, 092103 (2015)CrossRefGoogle Scholar
  136. 136.
    Wang, G., Long, S., Yu, Z., Zhang, M., Li, Y., Xu, D., et al.: Impact of program/erase operation on the performances of oxide-based resistive switching memory. Nanoscale Res. Lett. 10, 39 (2015)CrossRefGoogle Scholar
  137. 137.
    Jeong, D.S., Thomas, R., Katiyar, R., Scott, J., Kohlstedt, H., Petraru, A., et al.: Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75, 076502 (2012)CrossRefGoogle Scholar
  138. 138.
    Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)CrossRefGoogle Scholar
  139. 139.
    Zhuang, W., Pan, W., Ulrichn B., Lee, J., Stecker, L., Burmaster, A., et al.: Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM). In: Electron Devices Meeting, 2002. IEDM’02. International, pp. 193–196 (2002)Google Scholar
  140. 140.
    Sheu, S.-S., Cheng, K.-H., Chang, M.-F., Chiang, P.-C., Lin, W.-P., Lee, H.-Y., et al.: Fast-write resistive RAM (RRAM) for embedded applications. IEEE Des. Test Comput. 28, 64–71 (2011)CrossRefGoogle Scholar
  141. 141.
    Walczyk, C., Walczyk, D., Schroeder, T., Bertaud, T., Sowinska, M., Lukosius, M., et al.: Impact of temperature on the resistive switching behavior of embedded HfO2-based RRAM devices. IEEE Trans. Electron Devices 58, 3124–3131 (2011)CrossRefGoogle Scholar
  142. 142.
    Turkyilmaz, O., Onkaraiah, S., Reyboz, M., Clermidy, F., Hraziia, C.A., Portal, J., et al.: RRAM-based FPGA for “normally off, instantly on” applications”. In: 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp. 101–108 (2012)Google Scholar
  143. 143.
    Mei, C.Y., Shen, W.C., Wu, C.H., Chih, Y.-D., King, Y.-C., Lin, C.J., et al.: 28-nm 2T high-K metal gate embedded RRAM with fully compatible CMOS logic processes. IEEE Electron Device Lett. 34, 1253–1255 (2013)CrossRefGoogle Scholar
  144. 144.
    Wu, S.-C., Lo, C., Hou, T.-H.: Novel two-bit-per-cell resistive-switching memory for low-cost embedded applications. IEEE Electron Device Lett. 32, 1662–1664 (2011)CrossRefGoogle Scholar
  145. 145.
    Fackenthal, R., Kitagawa, M., Otsuka, W., Prall, K., Mills, D., Tsutsui, K., et al.: 19.7 A 16 Gb ReRAM with 200 MB/s write and 1 GB/s read in 27 nm technology. In: 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 338–339 (2014)Google Scholar
  146. 146.
    Lv, H., Xu, X., Liu, H., Liu, R., Liu, Q., Banerjee, W., et al.: Evolution of conductive filament and its impact on reliability issues in oxide-electrolyte based resistive random access memory. Sci. Rep. 5 (2015)Google Scholar
  147. 147.
    Xu, X., Lv, H., Li, Y., Liu, H., Wang, M., Liu, Q., et al.: Degradation of gate voltage controlled multilevel storage in one transistor one resistor electrochemical metallization cell. IEEE Electron Device Lett. 36, 555–557 (2015)CrossRefGoogle Scholar
  148. 148.
    Liang, J., Wong, H.-S.P.: Cross-point memory array without cell selectors—device characteristics and data storage pattern dependencies. IEEE Trans. Electron Devices 57, 2531–2538 (2010)CrossRefGoogle Scholar
  149. 149.
    Kügeler, C., Meier, M., Rosezin, R., Gilles, S., Waser, R.: High density 3D memory architecture based on the resistive switching effect. Solid-State Electron. 53, 1287–1292 (2009)CrossRefGoogle Scholar
  150. 150.
    Park, W.Y., Kim, G.H., Seok, J.Y., Kim, K.M., Song, S.J., Lee, M.H., et al.: A Pt/TiO2/Ti Schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays. Nanotechnology 21, 195201 (2010)CrossRefGoogle Scholar
  151. 151.
    Chand, U., Huang, K.-C., Huang, C.-Y., Tseng, T.-Y.: Mechanism of nonlinear switching in HfO2-based crossbar RRAM with inserting large bandgap tunneling barrier layer. IEEE Trans. Electron Devices 62, 3665–3670 (2015)CrossRefGoogle Scholar
  152. 152.
    Kim, S., Zhou, J., Lu, W.D.: Crossbar RRAM arrays: selector device requirements during write operation. IEEE Trans. Electron Devices 61, 2820–2826 (2014)CrossRefGoogle Scholar
  153. 153.
    Huang, Y., Huang, R., Pan, Y., Zhang, L., Cai, Y., Yang, G., et al.: A new dynamic selector based on the bipolar RRAM for the crossbar array application. IEEE Trans. Electron Devices 59, 2277–2280 (2012)CrossRefGoogle Scholar
  154. 154.
    Kim, T.W., Zeigler, D.F., Acton, O., Yip, H.L., Ma, H., Jen, A.K.Y.: All-organic photopatterned one diode-one resistor cell array for advanced organic nonvolatile memory applications. Adv. Mater. 24, 828–833 (2012)CrossRefGoogle Scholar
  155. 155.
    Lee, M.J., Seo, S., Kim, D.C., Ahn, S.E., Seo, D.H., Yoo, I.K., et al.: A low-temperature-grown oxide diode as a new switch element for high-density, nonvolatile memories. Adv. Mater. 19, 73–76 (2007)CrossRefGoogle Scholar
  156. 156.
    Wang, G., Lauchner, A.C., Lin, J., Natelson, D., Palem, K.V., Tour, J.M.: High-performance and low-power rewritable SiOx 1 kbit one diode–one resistor crossbar memory array. Adv. Mater. 25, 4789–4793 (2013)CrossRefGoogle Scholar
  157. 157.
    Huang, J.-J., Tseng, Y.-M., Hsu, C.-W., Hou, T.-H.: Bipolar nonlinear Ni/TiO2/Ni selector for 1S1R crossbar array applications. IEEE Electron Device Lett. 32, 1427–1429 (2011)CrossRefGoogle Scholar
  158. 158.
    Baek, I., Kim, D., Lee, M., Kim, H.-J., Yim, E., Lee, M., et al.: Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application. In: IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest, pp. 750–753 (2005)Google Scholar
  159. 159.
    Shin, Y.C., Song, J., Kim, K.M., Choi, B.J., Choi, S., Lee, H.J., et al.: (In,Sn)2O3/TiO2/Pt Schottky-type diode switch for the TiO2 resistive switching memory array. Appl. Phys. Lett. 92, 162904 (2008)CrossRefGoogle Scholar
  160. 160.
    Lee, M.-J., Park, Y., Kang, B.-S., Ahn, S.-E., Lee, C., Kim, K., et al.: 2-stack 1D-1R cross-point structure with oxide diodes as switch elements for high density resistance RAM applications. In: IEEE International Electron Devices Meeting, 2007. IEDM 2007, pp. 771–774 (2007)Google Scholar
  161. 161.
    Kim, G.H., Lee, J.H., Ahn, Y., Jeon, W., Song, S.J., Seok, J.Y., et al.: 32 × 32 crossbar array resistive memory composed of a stacked Schottky diode and unipolar resistive memory. Adv. Func. Mater. 23, 1440–1449 (2013)CrossRefGoogle Scholar
  162. 162.
    Li, Y., Lv, H., Liu, Q., Long, S., Wang, M., Xie, H., et al.: Bipolar one diode–one resistor integration for high-density resistive memory applications. Nanoscale 5, 4785–4789 (2013)CrossRefGoogle Scholar
  163. 163.
    Son, M., Lee, J., Park, J., Shin, J., Choi, G., Jung, S., et al.: Excellent selector characteristics of nanoscale VO2 for high-density bipolar ReRAM applications. IEEE Electron Device Lett. 32, 1579–1581 (2011)CrossRefGoogle Scholar
  164. 164.
    Cha, E., Woo, J., Lee, D., Lee, S., Song, J., Koo, Y., et al.: Nanoscale (~10 nm) 3D vertical ReRAM and NbO2 threshold selector with TiN electrode. In: 2013 IEEE International Electron Devices Meeting (IEDM), pp. 10.5.1–10.5.4 (2013)Google Scholar
  165. 165.
    Anbarasu, M., Wimmer, M., Bruns, G., Salinga, M., Wuttig, M.: Nanosecond threshold switching of GeTe6 cells and their potential as selector devices. Appl. Phys. Lett. 100, 143505 (2012)CrossRefGoogle Scholar
  166. 166.
    Hsieh, M.-C., Liao, Y.-C., Chin, Y.-W., Lien, C.-H., Chang, T.-S., Chih, Y.-D., et al.: Ultra high density 3D via RRAM in pure 28 nm CMOS process. In: 2013 IEEE International Electron Devices Meeting (IEDM), pp. 10.3.1–10.3.4 (2013)Google Scholar
  167. 167.
    Luo, Q., Xu, X., Liu, H., Lv, H., Gong, T., Long, S., et al.: Cu BEOL compatible selector with high selectivity (>107), extremely low off-current (~pA) and high endurance (>1010). In: 2015 IEEE International Electron Devices Meeting (IEDM), pp. 10.4.1–10.4.4 (2015)Google Scholar
  168. 168.
    Luo, Q., Xu, X., Lv, H., Gong, T., Long, S., Liu, Q., et al.: Highly uniform and nonlinear selection device based on trapezoidal band structure for high density nanocrossbar memory array. Nano Res., 1–8 (2017)Google Scholar
  169. 169.
    Lee, W., Park, J., Kim, S., Woo, J., Shin, J., Choi, G., et al.: High current density and nonlinearity combination of selection device based on TaOx/TiO2/TaOx structure for one selector–one resistor arrays. ACS Nano 6, 8166–8172 (2012)CrossRefGoogle Scholar
  170. 170.
    Allyn, C., Gossard, A., Wiegmann, W.: New rectifying semiconductor structure by molecular beam epitaxy. Appl. Phys. Lett. 36, 373–376 (1980)CrossRefGoogle Scholar
  171. 171.
    Lee, S., Lee, D., Woo, J., Cha, E., Park, J., Hwang, H.: Engineering oxygen vacancy of tunnel barrier and switching layer for both selectivity and reliability of selector-less ReRAM. IEEE Electron Device Lett. 35, 1022–1024 (2014)CrossRefGoogle Scholar
  172. 172.
    Zuo, Q., Long, S., Liu, Q., Zhang, S., Wang, Q., Li, Y., et al.: Self-rectifying effect in gold nanocrystal-embedded zirconium oxide resistive memory. J. Appl. Phys. 106, 073724 (2009)CrossRefGoogle Scholar
  173. 173.
    Luo, Q., Xu, X., Liu, H., Lv, H., Gong, T., Long, S., et al.: Demonstration of 3D vertical RRAM with ultra low-leakage, high-selectivity and self-compliance memory cells. In: 2015 IEEE International Electron Devices Meeting (IEDM), pp. 10.2.1–10.2.4 (2015)Google Scholar
  174. 174.
    Xu, X., Luo, Q., Gong, T., Lv, H., Long, S., Liu, Q., et al.: Fully CMOS compatible 3D vertical RRAM with self-aligned self-selective cell enabling sub-5 nm scaling. In: 2016 IEEE Symposium on VLSI Technology, pp. 1–2 (2016)Google Scholar
  175. 175.
    Liu, W., Tran, X.A., Yu, H., Sun, X.: A self-rectifying unipolar HfOx based RRAM using doped germanium bottom electrode. ECS Solid State Lett. 2, Q35–Q38 (2013)CrossRefGoogle Scholar
  176. 176.
    Lv, H., Li, Y., Liu, Q., Long, S., Li, L., Liu, M.: Self-rectifying resistive-switching device with α-Si/WO3 bilayer. IEEE Electron Device Lett. 34, 229–231 (2013)CrossRefGoogle Scholar
  177. 177.
    Seok, J.Y., Song, S.J., Yoon, J.H., Yoon, K.J., Park, T.H., Kwon, D.E., et al.: A review of three-dimensional resistive switching cross-bar array memories from the integration and materials property points of view. Adv. Func. Mater. 24, 5316–5339 (2014)CrossRefGoogle Scholar
  178. 178.
    Baek, I., Park, C., Ju, H., Seong, D., Ahn, H., Kim, J., et al.: Realization of vertical resistive memory (VRRAM) using cost effective 3D process. In: 2011 IEEE International Electron Devices Meeting (IEDM), pp. 31.8.1–31.8.4 (2011)Google Scholar
  179. 179.
    Jang, J., Kim, H.-S., Cho, W., Cho, H., Kim, J., Shim, S.I., et al.: Vertical cell array using TCAT (Terabit Cell Array Transistor) technology for ultra high density NAND flash memory. In: 2009 Symposium on VLSI Technology, pp. 192–193 (2009)Google Scholar
  180. 180.
    Katsumata, R., Kito, M., Fukuzumi, Y., Kido, M., Tanaka, H., Komori, Y., et al.: Pipe-shaped BiCS flash memory with 16 stacked layers and multi-level-cell operation for ultra high density storage devices. In: 2009 Symposium on VLSI Technology, pp. 136–137 (2009)Google Scholar
  181. 181.
    Park, S.-G., Yang, M.K., Ju, H., Seong, D.-J., Lee, J.M., Kim, E., et al.: A non-linear ReRAM cell with sub-1 μA ultralow operating current for high density vertical resistive memory (VRRAM). In: 2012 IEEE International Electron Devices Meeting (IEDM), pp. 20.8.1–20.8.4 (2012)Google Scholar
  182. 182.
    Burr, G.W., Shenoy, R.S., Virwani, K., Narayanan, P., Padilla, A., Kurdi, B., et al.: Access devices for 3D crosspoint memory. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Measur. Phenom. 32, 040802 (2014)Google Scholar
  183. 183.
    Pan, F., Gao, S., Chen, C., Song, C., Zeng, F.: Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater. Sci. Engi. R Rep. 83, 1–59 (2014)CrossRefGoogle Scholar
  184. 184.
    Woo, J., Lee, D., Choi, G., Cha, E., Kim, S., Lee, W., et al.: Selector-less RRAM with non-linearity of device for cross-point array applications. Microelectron. Eng. 109, 360–363 (2013)CrossRefGoogle Scholar
  185. 185.
    Luo, Q., Xu, X., Liu, H., Lv, H., Gong, T., Long, S., et al.: Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays. Nanoscale 8, 15629–15636 (2016)CrossRefGoogle Scholar
  186. 186.
    Li, H., Chen, H.-Y., Chen, Z., Chen, B., Liu, R., Qiu, G., et al.: Write disturb analyses on half-selected cells of cross-point RRAM arrays. In: 2014 IEEE International Reliability Physics Symposium, pp. MY.3.1–MY.3.4 (2014)Google Scholar
  187. 187.
    Yu, S., Chen, H.-Y., Deng, Y., Gao, B., Jiang, Z., Kang, J., et al.: 3D vertical RRAM-scaling limit analysis and demonstration of 3D array operation. In: 2013 Symposium on VLSI Technology (VLSIT), pp. T158–T159 (2013)Google Scholar
  188. 188.
    Zhirnov, V.V., Meade, R., Cavin, R.K., Sandhu, G.: Scaling limits of resistive memories. Nanotechnology 22, 254027 (2011)CrossRefGoogle Scholar
  189. 189.
    Sun, P., Li, L., Lu, N., Lv, H., Liu, M., Liu, S.: Physical model for electroforming process in valence change resistive random access memory. J. Comput. Electron. 14, 146–150 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of MicroelectronicsChinese Academy of Sciences (CAS)Chaoyang District, BeijingChina

Personalised recommendations