Advertisement

Three-Dimensional Crossbar Arrays of Self-rectifying Si/SiO2/Si Memristors

  • Can Li
  • Qiangfei XiaEmail author
Chapter

Abstract

Memristors are promising building blocks for next-generation non-volatile memory, bio-inspired computing, and beyond. Currently, however, they are still suffering from several difficulties that prevent their mass production, including material compatibility and large array operation. In this chapter, we first survey research efforts on using silicon oxide as the switching material, and various ways to integrate selectors with silicon oxide based memristors for large array operation. A self-rectifying unipolar p-Si/SiO2/n-Si memristor is then introduced. The resistive switching is related to the formation and the rupture of a highly localized Si-rich conduction channel, as suggested by both electrical characterization and direct observation using transmission electron microscope (TEM). The self-rectifying behavior is attributed to a p-i-n diode at each junction at low resistance state, and negates the need for an external selector in a passive memristor array. Finally, we discuss three-dimensional crossbars of all-Si based memristors. The effectiveness of the built-in diodes in blocking both intra- and inter-layer sneak path current is confirmed with both simulation and experiments.

References

  1. 1.
    Hickmott, T.W.: Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33(9), 2669 (1962)CrossRefGoogle Scholar
  2. 2.
    Simmons, J.G., Verderber, R.R.: New conduction and reversible memory phenomena in thin insulating films. Proc. R. Soc. London. Series A. Math. Phys. Sci. 301(1464), 77–102 (1967)Google Scholar
  3. 3.
    Dearnaley, G., Stoneham, A.M., Morgan, D.V.: Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33(3), 1129 (1970)CrossRefGoogle Scholar
  4. 4.
    Yao, J., Sun, Z., Zhong, L., Natelson, D., Tour, J.M.: Resistive switches and memories from silicon oxide. Nano Lett. 10(10), 4105–4110 (2010)CrossRefGoogle Scholar
  5. 5.
    Mehonic, A., Kenyon, A.J.: Emulating the electrical activity of the neuron using a silicon oxide RRAM cell. Front. Neurosci. 10, 57 (2016)CrossRefGoogle Scholar
  6. 6.
    Mehonic, A., et al.: Structural changes and conductance thresholds in metal-free intrinsic SiOx resistive random access memory. J. Appl. Phys. 117(12), 124505 (2015)CrossRefGoogle Scholar
  7. 7.
    Wang, Y., Chen, K., Qian, X., Fang, Z., Li, W., Xu, J.: The x dependent two kinds of resistive switching behaviors in SiOx films with different x component. Appl. Phys. Lett. 104(1), 012112 (2014)CrossRefGoogle Scholar
  8. 8.
    Yao, J., Zhong, L., Natelson, D., Tour, J.M.: Silicon oxide: a non-innocent surface for molecular electronics and nanoelectronics studies. J. Am. Chem. Soc. 133(4), 941–948 (2011)CrossRefGoogle Scholar
  9. 9.
    Yao, J., et al.: Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene (in eng). Nat. Commun. 3, 1101 (2012)CrossRefGoogle Scholar
  10. 10.
    He, C., et al.: Tunable electroluminescence in planar graphene/SiO2 memristors. Adv. Mater. 25(39), 5593–5598 (2013)CrossRefGoogle Scholar
  11. 11.
    Wang, Y., et al.: Effects of sidewall etching on electrical properties of SiOx resistive random access memory. Appl. Phys. Lett. 103(21), 213505 (2013)CrossRefGoogle Scholar
  12. 12.
    Mehonic, A., et al.: Electrically tailored resistance switching in silicon oxide (in eng). Nanotechnology 23(45), 455201 (2012)CrossRefGoogle Scholar
  13. 13.
    Chang, Y.-F., et al.: Intrinsic SiOx-based unipolar resistive switching memory. I. Oxide stoichiometry effects on reversible switching and program window optimization. J. Appl. Phys. 116(4), 043708 (2014)CrossRefGoogle Scholar
  14. 14.
    Mehonic, A., et al.: Nanoscale transformations in metastable, amorphous, silicon-rich silica. Adv. Mater. 28(34), 7486–7493 (2016)CrossRefGoogle Scholar
  15. 15.
    Li, C., et al.: Three-dimensional crossbar arrays of self-rectifying Si/SiO2/Si memristors. Nat. Commun. 8, 15666 (2017)Google Scholar
  16. 16.
    Yao, J., Zhong, L., Natelson, D., Tour, J.M.: In situ imaging of the conducting filament in a silicon oxide resistive switch (in eng). Sci. Rep. 2, 242 (2012)CrossRefGoogle Scholar
  17. 17.
    Mehonic, A., et al.: Quantum conductance in silicon oxide resistive memory devices. Sci. Rep. 3, 2708 (2013)CrossRefGoogle Scholar
  18. 18.
    Shim, W., Yao, J., Lieber, C.M.: Programmable resistive-switch nanowire transistor logic circuits. Nano Lett. 14(9), 5430–5436 (2014)CrossRefGoogle Scholar
  19. 19.
    Wang, G., Lauchner, A.C., Lin, J., Natelson, D., Palem, K.V., Tour, J.M.: High-performance and low-power rewritable SiOx 1 kbit one diode-one resistor crossbar memory array. Adv. Mater. 25(34), 4789–4793 (2013)CrossRefGoogle Scholar
  20. 20.
    Ji, L., et al.: Integrated one diode-one resistor architecture in nanopillar SiOx resistive switching memory by nanosphere lithography. Nano Lett. 14(2), 813–818 (2014)CrossRefGoogle Scholar
  21. 21.
    Li, C., Jiang, H., Xia, Q.: Low voltage resistive switching devices based on chemically produced silicon oxide. Appl. Phys. Lett. 103(6), 062104 (2013)CrossRefGoogle Scholar
  22. 22.
    Mark, P., Helfrich, W.: Space-charge-limited currents in organic crystals. J. Appl. Phys. 33(1), 205–215 (1962)CrossRefGoogle Scholar
  23. 23.
    Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley, Hoboken (2006)CrossRefGoogle Scholar
  24. 24.
    Yi-Chou, C., et al.: An access-transistor-free (0T/1R) non-volatile resistance random access memory (RRAM) using a novel threshold switching, self-rectifying chalcogenide device. In: Electron Devices Meeting, 2003. IEDM ‘03 Technical Digest. IEEE International, pp. 37.4.1–37.4.4 (2003)Google Scholar
  25. 25.
    Zuo, Q., et al.: ZrO2-based memory cell with a self-rectifying effect for crossbar WORM memory application. IEEE Electron. Device Lett. 31(4), 344–346 (2010)CrossRefGoogle Scholar
  26. 26.
    Zuo, Q., et al.: Self-rectifying effect in gold nanocrystal-embedded zirconium oxide resistive memory. J. Appl. Phys. 106(7), 073724 (2009)CrossRefGoogle Scholar
  27. 27.
    Dong, Y., Yu, G., McAlpine, M.C., Lu, W., Lieber, C.M.: Si/a-Si core/shell nanowires as nonvolatile crossbar switches. Nano Lett. 8(2), 386–391 (2008)CrossRefGoogle Scholar
  28. 28.
    Jo, S.H., Lu, W.: CMOS compatible nanoscale nonvolatile resistance switching memory. Nano Lett. 8(2), 392–397 (2008)CrossRefGoogle Scholar
  29. 29.
    Kim, K.-H., Hyun Jo, S., Gaba, S., Lu, W.: Nanoscale resistive memory with intrinsic diode characteristics and long endurance. Appl. Phys. Lett. 96(5), 053106 (2010)CrossRefGoogle Scholar
  30. 30.
    Kim, H.-D., Yun, M., Kim, S.: Self-rectifying resistive switching behavior observed in Si3N4-based resistive random access memory devices. J. Alloy. Compd. 651, 340–343 (2015)CrossRefGoogle Scholar
  31. 31.
    Gao, S., et al.: Forming-free and self-rectifying resistive switching of the simple Pt/TaOx/n-Si structure for access device-free high-density memory application. Nanoscale 7(14), 6031–6038 (2015)CrossRefGoogle Scholar
  32. 32.
    Tang, G.S., et al.: Resistive switching with self-rectifying behavior in Cu/SiOx/Si structure fabricated by plasma-oxidation. J. Appl. Phys. 113(24), 244502 (2013)CrossRefGoogle Scholar
  33. 33.
    Dongyi, L., et al.: Investigations of conduction mechanisms of the self-rectifying n+Si-HfO2–Ni RRAM devices. IEEE Trans. Electron Devices 61(7), 2294–2301 (2014)CrossRefGoogle Scholar
  34. 34.
    Tran, X.A., et al.: Self-rectifying and forming-free unipolar HfOx based-high performance RRAM built by fab-avaialbe materials. In: Electron Devices Meeting (IEDM), 2011 IEEE International, pp. 31.2.1–31.2.4 (2011)Google Scholar
  35. 35.
    Wang, M.J., Gao, S., Zeng, F., Song, C., Pan, F.: Unipolar resistive switching with forming-free and self-rectifying effects in Cu/HfO2/n-Si devices. AIP Adv. 6(2), 025007 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computing EngineeringUniversity of MassachusettsAmherstUSA

Personalised recommendations