Spiking in Memristor Networks

  • Ella Gale
  • Ben de Lacy Costello
  • Andrew AdamatzkyEmail author


Memristors have been suggested for the use as artificial synapses and have performed well in this role in simulations with artificial spiking neurons. We will show that real world memristors natively spike and describe the properties of these spikes. A network of purely memristors should not show any behaviour in addition to that expected from a single memristor. Networks of 2 and 3 memristor combinations were investigated. We demonstrate that, if the memristors are wired together with opposing polarity, oscillations and bursting spikes emerge. We compare two types of memristors, ‘filamentary’ and standard memristors (which are closer to Chua’s theoretical memristors), and found that standard memristors do not exhibit these rich behaviours if they are wired with the same polarity. We propose that these oscillations and spikes may be similar phenomenon to brainwaves and neural spike trains and suggest that these behaviours can be used to perform brain-like computation.


  1. 1.
    Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)CrossRefGoogle Scholar
  2. 2.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  3. 3.
    Toumazou, C., Prodromakis, T., Chua, L.: Two centuries of memristors. Nat. Mater. 11, 478–481 (2012)CrossRefGoogle Scholar
  4. 4.
    Askinaga, H., Shima, H.: Resistive random access memory (ReRAM) based on metal oxides. Proc. IEEE 98, 2237–2251 (2010)CrossRefGoogle Scholar
  5. 5.
    Wu, J., Mobly, K., McCreery, R.L.: Electronic characteristics of fluorene/TiO\(_2\) molecular heterojunctions. J. Chem. Phys. 126, 024704 (2007)CrossRefGoogle Scholar
  6. 6.
    Erokhin, V., Berzina, T., Camorani, P., Smerieri, A., Vavoulis, D., Feng, J., Fontana, M.P.: Material memristive device circuits with synaptic plasticity: learning and memory. BioNanoSci (2011). Scholar
  7. 7.
    Linares-Barranco, B., Serrano-Gotarredona, T.: Exploiting memristance in adaptive asynchronous spiking neuromorphic nanotechnology systems. In: 9th IEEE Conference on Nanotechnology, pp. 601–609 (2009)Google Scholar
  8. 8.
    Zamarreno-Ramos, C., Carmunas, L.A., Pérez-Carrasco, J.A., Masquelier, T., Serrano-Gotarredona, T., Linares-Barranco, B.: On spike-timing dependent plasticity, memristive devices and building a self-learning visual cortex. Front. Neuormorphic Eng. 5, 26(1)–26(20) (2011)Google Scholar
  9. 9.
    Kosta, S.P., Kosta, Y.P., Bhatele, M., Dubey, Y.M., Gaur, A., Kosta, S., Gupta, J., Patel, A., Patel, B.: Human blood liquid memristor. Int. J. Med. Eng. Inform. 16–29 (2011)CrossRefGoogle Scholar
  10. 10.
    Lütken, C.A., Grimes, S., Martinsen, O.G.: Memristive properties of human sweat ducts. In: World Congress on Medical Physics and Biomedial Engineering, vol. 25/7, pp. 696–698 (2009)Google Scholar
  11. 11.
    Adamatzky, A., Gale, E., de Lacy Costello, B.: Are slime moulds living memristors? (2013) arXiv, June:1306.3414v1Google Scholar
  12. 12.
    Chua, L., Sbitnev, V., Kim, H.: Hodgkin-Huxley axon is made of memristors. Int. J. Bifurcat. Chaos 22, 1230011 (48pp) (2012)CrossRefGoogle Scholar
  13. 13.
    Chua, L., Sbitnev, V., Kim, H.: Neurons are poised near the edge of chaos. Int. J. Bifurcat. Chaos 11, 1250098 (49pp) (2012)CrossRefGoogle Scholar
  14. 14.
    Gergel-Hackett, N., Hamadani, B., Dunlap, B., Suehle, J., Ricther, C., Hacker, C., Gundlach, D.: A flexible solution-processed memristor. IEEE Electron Device Lett. 30, 706–708 (2009)CrossRefGoogle Scholar
  15. 15.
    Gale, E., Pearson, D., Kitson, S., Adamatzky, A., de Lacy Costello, B.: Different behaviour seen in flexible Titanium Dioxide sol-gel memristors dependent on the choice of electrode material. In: Technical Digest of Frontiers in Electronic Materials, pp. 577–578. Wiley-VCH, Weinheim, Germany (2012)Google Scholar
  16. 16.
    Bi, G.-Q., Poo, M.-M.: Spike timing for LTP and LTD in culture. J. Neurosci. 18, 10472–10565 (1998)CrossRefGoogle Scholar
  17. 17.
    Gale, E.: The Memory-Conservation Model of Memristance (Forthcoming)Google Scholar
  18. 18.
    Gale, E.M., de Lacy Costello, B., Adamatzky, A.: Filamentary extension of the Mem-Con theory of memristance and its application to titanium dioxide Sol-Gel memristors. In: IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA 2012), Kuala Lumpur, Malaysia, November 2012Google Scholar
  19. 19.
    Troitsky, V.I., Berzina, T.S., Fontana, M.P.: Langmuir–Blodgett assemblies with patterned conductive polyaniline layers. Mater. Sci. Eng. 22, 239 (2002)CrossRefGoogle Scholar
  20. 20.
    Troitsky, V.I., Berzina, T.S., Fontana, M.P.: Deposition of uniform conductive polyaniline films and approach for their patterning. Synth. Met. 129, 39 (2002)CrossRefGoogle Scholar
  21. 21.
    Gale, E., de Lacy Costello, B., Adamatzky, A.: Observation, characterization and modeling of memristor current spikes. Appl. Math. Inf. Sci. 7, 1395–1403 (2013)CrossRefGoogle Scholar
  22. 22.
    Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hebb, D.: The Organisation of Behaviour. Wiley, New York (1949)Google Scholar
  24. 24.
    Masumoto, T.: A chaotic attractor from Chua’s circuit. IEEE Trans. Circuits Syst. CAS–31, 1055–1058 (1984)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Chua, L.: Chua’s circuit: ten years later. IEICE Trans. Fundam. E77–A, 1811–1821 (1994)Google Scholar
  26. 26.
    Madan, R.N.: Chua’s Circuit: A Paradigm for Chaos. World Scientific, Singapore (1993)CrossRefGoogle Scholar
  27. 27.
    Itoh, M., Chua, L.: Memristor oscillators. Int. J. Bifurcat. Chaos 18, 3183–3206 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Messias, M., Nespoli, C., Botta, V.A.: Hopf bifurcation from lines of equilibria without parameters in memristor oscillators. Int. J. Bifurcat. Chaos 20, 437–450 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Bao, B.C., Liu, Z., Xu, J.P.: Steady periodic memristor oscillator with transient chaotic behaviours. Electron. Lett. 46, 237–238 (2010)Google Scholar
  30. 30.
    Bao, B.-C., Xu, J.-P., Liu, Z.: Initial state dependent dynamical behaviors in a memristor based chaotic circuit. Chin. Phys. Lett. 27, 070504 (2010)CrossRefGoogle Scholar
  31. 31.
    Bo-Cheng, B., Ping, X.J., Guo-Hua, Z., Zheng-Hua, M., Ling, Z.: Chaotic memristive circuit: equivalent circuit realization and dynamical analysis. Chin. Phys. B 20, 120502 (7pp) (2011)Google Scholar
  32. 32.
    Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.V.: A chaotic circuit based on hewlett-packard memristor. Chaos 22, 023136 (2012)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Medeiros-Ribeiro, G., Pickett, M.D., Stanley Williams, R.: A scalable neuristor built with Mott memristors. Nat. Mater. 16, 114–117 (2012)Google Scholar
  34. 34.
    Muthuswamy, B.: Memristor based circuit chaos. IETE Tech. Rev. 26, 1–15 (2009)CrossRefGoogle Scholar
  35. 35.
    Gale, E., Pearson, D., Kitson, S., Adamatzky, A., de Lacy Costello, B.: Different behaviour seen in flexible titanium dioxide sol-gel memristors dependent on the choice of electrode material. In: Technical Digest of Frontiers in Electronic Materials, pp. 577–578. Nature Conference. Wiley-VCH, June 2012Google Scholar
  36. 36.
    Gale, E., Pearson, D., Kitson, S., Adamatzky, A., de Lacy Costello, B.: Aluminium electrodes effect the operation of titanium oxide sol-gel memristors (2011). arXiv:1106.6293v1
  37. 37.
    Erokhin, V., Berzina, T., Fontana, M.P.: Hybrid electronic device based on polyaniline-polyethylenoxide junction. J. Appl. Phys. 97, 064501 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ella Gale
    • 1
  • Ben de Lacy Costello
    • 1
  • Andrew Adamatzky
    • 1
    Email author
  1. 1.University of the West of EnglandBristolUK

Personalised recommendations