A Comprehensive Technical Review on Security Techniques and Low Power Target Architectures for Wireless Sensor Networks

  • Abdulfattah M. ObeidEmail author
  • Manel Elleuchi
  • Mohamed Wassim Jmal
  • Manel Boujelben
  • Mohamed Abid
  • Mohammed S. BenSaleh
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 735)


Advancements in wireless sensor networks (WSNs) technologies have enabled their introduction in various application fields. A large number of these applications use sensitive data that require securing algorithms. In this paper, we present a comprehensive survey on the most commonly used security techniques in wireless sensor networks. In this survey, we also present the different implementations on numerous platforms used to realize these security algorithms with special attention to power consumption. Based upon our findings, we propose the main characteristics and parts of a new solution to realize a low power wireless sensor node with high level of security.


Architecture Communication system security Cryptographic protocols Energy consumption 


  1. 1.
    Culler, D., Estrin, D., Srivastava, M.: Overview of sensor networks. Computer 37, 41–49 (2004)CrossRefGoogle Scholar
  2. 2.
    Drimer, S., Guneysu, T., Paar, C.: DSPs, BRAMs and a pinch of logic: new recipes for AES on FPGAs. In: Proceedings of the 2008 16th International Symposium on Field-Programmable Custom Computing Machines, Stanford, CA, USA, 14–15 April 2008, pp. 99–108 (2008)Google Scholar
  3. 3.
    Hamalainen, P., Hannikainen, M., Hamalainen, T.D.: Review of hardware architectures for advanced encryption standard implementations considering wireless sensor networks. In: Proceedings of the 7th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, Samos, Greece, 16–19 July 2007, pp. 443–453 (2007)Google Scholar
  4. 4.
    Guneysu, T., Paar, C.: Ultra high performance ECC over NIST primes on commercial FPGAs. In: Proceeding of the 10th International Workshop on Cryptographic Hardware and Embedded Systems, Washington, DC, USA, 10–13 August 2008, pp. 62–78 (2008)Google Scholar
  5. 5.
    Peter, S., Stecklina, O., Portilla, J., de la Torre, E., Langendoerfer, P., Riesgo, T.: Reconfiguring crypto hardware accelerators on wireless sensor nodes. In: Proceedings of the 6th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks Workshops, Roma, Italy, 22–26 June 2009, pp. 1–3 (2009)Google Scholar
  6. 6.
    Healy, M., Newe, T., Lewis, E.: Analysis of hardware encryption versus software encryption on wireless sensor network motes. In: Smart Sensors and Sensing Technology, vol. 20, pp. 3–14. Springer, Heidelberg (2008)Google Scholar
  7. 7.
    Piotrowski, K., Peter, S.: How public key cryptography influences wireless sensor node lifetime. In: Proceedings of the 4th ACM Workshop on Security of Ad Hoc and Sensor Networks, New York, NY, USA, pp. 169–176 (2006)Google Scholar
  8. 8.
    Sharma, G., Bala, S., Verma, A.K.: Security frameworks for wireless sensor networks-review. In: 2nd International Conference on Communication, Computing and Security, Rourkela, pp. 978–987 (2012)Google Scholar
  9. 9.
    Namin, A.H., Hasan, M.A.: Hardware implementation of the compression function for selected SHA-3 candidate. In: 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Ph.D. Forum (IPDPSW), Atlanta, GA, 19–23 April 2010, pp. 1–4. IEEE (2010)Google Scholar
  10. 10.
    Matsuo, S., Knezevic, M., Schaumont, P., Verbauwhede, I., Satoh, A., Sakiyama, K., Ota, K.: How can we conduct fair and consistent hardware evaluation for SHA-3 candidate. In: Second SHA-3 Candidate Conference, University of California, Santa Barbara, 23–24 August 2010Google Scholar
  11. 11.
    Hu, Y., Perrig, A., Johnson, D.: Ariadne: a secure on-demand routing for ad hoc networks. In: Proceedings of the 8th Annual International Conference on Mobile Computing and Networking, Atlanta, 23–28 September 2002, pp. 12–23 (2002)Google Scholar
  12. 12.
    Daniluka, K., Szynkiewicza, E.N.: A survey of energy efficient security architectures and protocols for wireless sensor networks. J. Telecommun. Inf. Technol. 3, 64–72 (2012)Google Scholar
  13. 13.
    Houssain, H., Badra, M., Al-Somani, T.F.: Comparative study of elliptic curve cryptography hardware implementations in wireless sensor networks. Int. J. RFID Secur. Cryptogr. (IJRFIDSC), 2(1) (2013)Google Scholar
  14. 14.
    Ganesan, P., Venugopalan, R., Peddabachagari, P., Dean, A., Mueller, F., Sichitiu, M.: Analyzing and modeling encryption overhead for sensor network nodes. In: 2nd ACM Wireless Sensor Networks and Applications, pp. 151–159. ACM Press, New York (2003)Google Scholar
  15. 15.
    Guo, X., Huang, S., Nazhandali, L., Schaumont, P.: Fair and comprehensive performance evaluation of 14 second round SHA-3 ASIC implementations. In: Second SHA-3 Candidate Conference. University of California, Santa Barbara, 23–24 August 2010Google Scholar
  16. 16.
    Kaps, J.P., Sunar, B.: Energy comparison of AES and SHA-1 for ubiquitous computing. In: Proceedings of the 2006 International Conference on Emerging Directions in Embedded and Ubiquitous Computing, Korea, 1–4 August 2006, pp. 372–381 (2006)Google Scholar
  17. 17.
    Fournel, N., Minier, M., Ubeda, S.: Survey and benchmark of stream ciphers for wireless sensor networks. In: Sauveron, D., Markantenorkis, K., Bilas, A., Quisquater, J.-J. (eds.) Information Security Theory and Practices. Smart Cards, Mobile and Ubiquitous Computing Systems, pp. 202–214. Springer, Heidelberg (2007)Google Scholar
  18. 18.
    Batina, L., Mentens, N., Sakiyama, K., Preneel, B., Verbauwhede, I.: Low-cost elliptic curve cryptography for wireless sensor networks. In: Proceeding of the Third European Conference on Security and Privacy in Ad-Hoc and Sensor Networks, Chicago, 17–21 September 2006, pp. 6–17 (2006)Google Scholar
  19. 19.
    Koo, W.K., Lee, H., Kim, Y.H., Lee, D.: Implementation and analysis of new lightweight cryptographic algorithm suitable for wireless sensor networks. In: International Conference on Information Security and Assurance, Busan, 24–26 April, pp. 73–76. IEEE (2008)Google Scholar
  20. 20.
    Rivest, R.L.: The RC5 encryption algorithm. In: Fast Software Encryption, Bart Preneel, vol. 1008, pp. 86–96. Springer, Heidelberg (1995)Google Scholar
  21. 21.
    Uluagac, A.S., Lee, C.P., Beyah, R.A., Copeland, J.A.: Designing secure protocols for wireless sensor networks. In: Li, Y., Huynh, D.T., Das, S.K., Du, D.Z. (eds.) Wireless Algorithms, Systems, and Applications, vol. 5258, pp. 503–514. Springer, Heidelberg (2008)Google Scholar
  22. 22.
    Baldwin, B., Hanley, N., Hamilton, M., Lu, L., Byrne, A., O’Neill, M., Marnane, W.P.: FPGA implementations of the round two SHA-3 candidates. In: Second SHA-3 Candidate Conference, University of California, Santa Barbara, 23–24 August 2010Google Scholar
  23. 23.
    Zhu, S., Setia, S., Jajodia, S.: LEAP: efficient security mechanisms for large-scale distributed sensor networks. ACM Trans. Sens. Netw. 2, 500–528 (2003)CrossRefGoogle Scholar
  24. 24.
    Daidone, R., Dini, G., Tiloca, M.: STaR: a reconfigurable and transparent middleware for WSNS security. In: Proceedings of 4th International Workshop on Networks of Cooperating Objects for Smart Cities, 8 April 2013, Philadelphia, USA, pp. 73–88 (2013)Google Scholar
  25. 25.
    Zapata, M.: Secure ad hoc on-demand distance vector (SAODV). Mob. Comput. Commun. Rev. 6, 106–107 (2002)CrossRefGoogle Scholar
  26. 26.
    Zhu, S., Xu, S., Setia, S., Jajodia, S.: LHAP: a lightweight hop-by-hop authentication protocol for ad-hoc networks. In: Proceeding of the 23rd International Conference on Distributed Computing Systems Workshops, 19–22 May 2003, pp. 749–755. IEEE (2003)Google Scholar
  27. 27.
    Perrig, A., Szewczyk, R., Wen, V., Culler, D., Tygar, J.: SPINS: security protocols for sensor networks. Wirel. Netw. 8, 521–534 (2002)CrossRefzbMATHGoogle Scholar
  28. 28.
    Karlof, C., Sastry, N., Wagner, D.: TinySec: a link layer security architecture for wireless sensor networks ACM. In: Proceeding of the 2nd International Conference on Embedded Networked Sensor System, 03–05 November 2004, Baltimore, MD, USA, pp. 162–175 (2004)Google Scholar
  29. 29.
    Hu, Y., Johnson, D., Perrig, A.: SEAD: secure efficient distance vector routing in mobile wireless ad-hoc networks. In: Proceedings of the 4th IEEE Workshop on Mobile Computing Systems and Applications, 20–21 June 2002, pp. 3–13. IEEE (2002)Google Scholar
  30. 30.
    Yussoff, Y.M., Hashim, H.: Trusted wireless sensor node platform. In: Proceedings of the World Congress on Engineering, 30 June–2 July 2010, London, U.K., pp. 774–779 (2010)Google Scholar
  31. 31.
    Watro, R., Kong, D., Cuti, S., Gardiner, C., Lynn, C., Kruus, P.: TinyPK: securing sensor networks with public key technology. In: Proceedings of the 2nd ACM Workshop on Security of ad hoc and Sensors Networks, Washington, DC, USA, 25–29 October 2004, pp. 59–64. ACM (2004)Google Scholar
  32. 32.
    Liu, A., Ning, P.: TinyECC: a configurable library for elliptic curve cryptography in wireless sensor networks. In: Proceedings of the International Conference on Information Processing in Sensor Networks, St. Louis, MO, 22–24 April 2008, pp. 245–256. IEEE (2008)Google Scholar
  33. 33.
    Oliveira, L., Scott, M., Lopez, J., Dahab, R.: TinyPBC: pairings for authenticated identity-based non-interactive key distribution in sensor networks. In: Proceedings of the 5th International Conference on Networked Sensing Systems, Kanazawa, 17–19 June 2008, pp. 173–180. IEEE (2008)Google Scholar
  34. 34.
    Xiong, X., Wong, D., Deng, X.: TinyPairing: a fast and lightweight pairing-based cryptographic library for wireless sensor networks. IACSIT Int. J. Eng. Technol. 5, 320–324 (2013)Google Scholar
  35. 35.
    Hu, W., Corke, P., Shih, W., Overs, L.: secFleck: a public key technology platform for wireless sensor networks. In: Proceedings of the 6th European Conference on Wireless Sensor Networks, Ireland, 11–13 February 2009, pp. 296–311 (2009)Google Scholar
  36. 36.
    Alkaid, H., Alfaraj, M.: MASA: end-to-end data security in sensor networks using a mix of asymmetric and symmetric approaches. In: Proceedings of the 2nd IEEE International Conference on New Technologies, Mobility and Security, 5–7 November 2008, Tangier, pp. 1–5. IEEE (2008)Google Scholar
  37. 37.
    Tahir, R., Jived, M., Ahmad, A., Iqbal, R.: SCUR: secure communications in wireless sensor networks using rabbit. In: Proceedings of the World Congress on Engineering, London, U.K., 2–4 July 2008, pp. 489–493 (2008)Google Scholar
  38. 38.
    Zhang, Y., Liu, W., Lou, W., Fang, Y.: Securing mobile ad hoc networks with certificate less public keys. IEEE Trans. Dependable Secure Comput. 3, 386–399 (2006)CrossRefGoogle Scholar
  39. 39.
    Dener, M.: Security analysis in wireless sensor networks. Int. J. Distrib. Sens. Netw. 9, Article ID 303501 (2014)Google Scholar
  40. 40.
    Clausen, T., Adjih, C., Jacquet, P., Laouiti, A., Muhlethaler, A., Raffo, D.: Securing the OLSR protocol. In: Proceeding of IFIP Med-Hoc-Net, June 2003Google Scholar
  41. 41.
    Kukkurainen, J., Soini, M., Sydanheimo, L.: RC5-based security in wireless sensor networks: utilization and performance. WSEAS Trans. Comput. 9, 1191–1200 (2010)Google Scholar
  42. 42.
    Mansour, I.: Contribution à la sécurité des communications des réseaux de capteurs sans fil. Doctoral thesis, Université Blaise Pascal - Clermont-Ferrand II, 05 July 2013Google Scholar
  43. 43.
    Knudsena, L., Wagner, D.: On the structure of Skipjack. Discret. Appl. Math. 111, 103–116 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Advances in Cryptology, vol. 196, pp. 47–53. Springer, Heidelberg (1985)Google Scholar
  45. 45.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. SIAM 32, 586–615 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Tharani, M., Senthilkumar, N.: Integrating wireless sensor networks into internet of things for security. In: Proceedings of the International Conference on Global Innovations in Computing Technology, 6–7 March 2014, India, pp. 467–473 (2014)Google Scholar
  47. 47.
    Jailin, S., Kayalvizhi, R., Vaidehi, V.: Performance analysis of hybrid cryptography for secured data aggregation in wireless sensor networks. In: Proceedings of International Conference on Recent Trends in Information Technology, 3–5 June 2011, Chennai, Tamil Nadu, pp. 307–312. IEEE (2011)Google Scholar
  48. 48.
    Passing, M., Dressler, F.: Experimental performance evaluation of cryptographic algorithm on sensors nodes. In: Proceedings of the IEEE International Conference on Mobile Adhoc and Sensor Systems, pp. 882–887. IEEE (2006)Google Scholar
  49. 49.
    Beuchat, J.L., Okamoto, E., Yamazaki, T.: A compact FPGA implementation of the SHA-3 candidate ECHO. In: IACR Eprint archive (2010)Google Scholar
  50. 50.
    Rivest, R.: The MD5 Message-Digest Algorithm. RFC 1321, April 1992Google Scholar
  51. 51.
    Eastlake, D., Jones, P.: US Secure Hash Algorithm 1 (SHA1). RFC 3174, September 2001Google Scholar
  52. 52.
    Sen, J.: A survey on wireless sensor network security. Int. J. Commun. Netw. Inf. Secur. (IJCNIS) 1, 55–78 (2009)Google Scholar
  53. 53.
    Alrajeh, N.A., Khan, S., Shams, B.: Intrusion detection systems in wireless sensor networks: a review. Int. J. Distrib. Sens. Netw. (2013)Google Scholar
  54. 54.
    Sharmila, S., Umamaheshwari, G., Ruckshana, M.: Hardware implementation of secure AODV for wireless sensor networks. ICTACT J. Commun. Technol. 1, 218–229 (2010)CrossRefGoogle Scholar
  55. 55.
    Malan, D., Welsh, M., Smith, M.: A public-key infrastructure for key distribution in TinyOS based on elliptic curve cryptography. In: Proceedings of the 1st IEEE International Conference on Sensor and Ad Hoc Communications and Networks, Santa Clara, California (2004)Google Scholar
  56. 56.
    Choi, K., Song, J.: Investigation of feasible cryptographic algorithms for wireless sensor network. In: Proceedings of the ICACT, Phoenix Park, 20–22 February, pp. 1381–1382. IEEE (2006)Google Scholar
  57. 57.
    Wander, A., Gura, N., Eberle, H., Gupta, V., Shantz, S.: Energy analysis of public-key cryptography for wireless sensor networks. In: Proceedings of the 3rd IEEE International Conference on Pervasive Computing and Communication, 8–12 March 2005, pp. 324–328. IEEE (2005)Google Scholar
  58. 58.
    Szczechowiak, P., Oliviera, L., Scott, M., Collier, M., Dahab, R.: NanoECC: testing the limits of elliptic curve cryptography in sensor networks. In: Proceedings of the 5th European Conference on Wireless Sensor Networks, Bologna, Italy, 30 January–1 February 2008, pp. 305–320. Springer, Heidelberg (2008)Google Scholar
  59. 59.
    Malik, M.Y.: Efficient implementation of Elliptic Curve Cryptography using low-power Digital Signal Processor. In: The 12th International Conference on Advanced Communication Technology (ICACT), Phoenix Park, 7–10 February 2010, pp. 1464–1468. IEEE (2010)Google Scholar
  60. 60.
    Lee, J., Kapitanova, K., Sonb, S.H.: The price of security in wireless sensor networks. Int. J. Comput. Telecommun. Netw. 54, 2967–2978 (2010)CrossRefGoogle Scholar
  61. 61.
  62. 62.
    Ozturk, E., Sunar, B., Savas, E.: Low-power elliptic curve cryptography using scaled modular arithmetic. In: Proceedings of 6th International Workshop on Cryptographic Hardware in Embedded Systems (CHES), pp. 92–106 (2004)Google Scholar
  63. 63.
    Gaubatz, G., Kaps, J.P., Öztürk, E., Sunar, B.: State of the art in ultra-low power public key cryptography for wireless sensor networks. In: Proceedings of the Third IEEE International Conference on Pervasive Computing and Communications Workshops, pp. 146–150 (2005)Google Scholar
  64. 64.
    Wolkerstorfer, J.: Scaling ECC hardware to a minimum. In: ECRYPT Workshop - Cryptographic Advances in Secure Hardware - CRASH 2005, 6–7 September 2005Google Scholar
  65. 65.
    Bertoni, G., Breveglieri, L., Venturi, M.: Power aware design of an elliptic curve coprocessor for 8 bit platforms. In: Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops, Pisa, 13–17 March, pp. 337–341. IEEE (2006)Google Scholar
  66. 66.
    Kumar, S., Paar, C.: Are standards compliant elliptic curve cryptosystems feasible on RFID? In: Proceedings of Workshop on RFID Security, Graz, Austria, July 2006Google Scholar
  67. 67.
    de la Piedra, A., Braeken, A., Touhafi, A.: Sensor systems based on FPGAs and their applications: a survey. Sensors 12, 12235–12264 (2012)CrossRefGoogle Scholar
  68. 68.
    Portilla, J., Otero, A., de la Torre, E., Riesgo, T., Stecklina, O., Peter, S., Langendörfer, P.: Adaptable security in wireless sensor networks by using reconfigurable ECC hardware coprocessors. Int. J. Distrib. Sens. Netw. 6, 1 (2010)CrossRefGoogle Scholar
  69. 69.
    Errandani, A., Abdaoui, A., Doumar, A., Châtelet, E.: Reconfigurable hardware implementation of a simple authentication protocol for a wireless sensor networks platform. Int. Interdisc. J. 16, 1739 (2013)Google Scholar
  70. 70.
    Kobayashi, K., Ikegami, J., Matsuo, S., Sakiyama, K., Ohta, K.: Evaluation of hardware performance for the SHA-3 candidates using SASEBO-GII. IACR Eprint report 2010/010Google Scholar
  71. 71.
    Mohda, A., Marzib, H., Aslama, N., Phillipsa, W., Robertsona, W.: A secure platform of wireless sensor networks. In: Proceedings of the 2nd International Conference on Ambient Systems, Networks and Technologies (ANT-2011), Canada, pp. 115–122 (2011)Google Scholar
  72. 72.
    Ramachandran, R., Prakash, T.J.J.: Design and implementation of SOC in NIOS-II soft core processor for secured wireless communication. Int. J. Comput. Appl. 53, 1–5 (2012)Google Scholar
  73. 73.
    Raymond, G.K.: Data Encryption Standard (DES). Federal Information Processing Standards Publication 46-3, 25 October 1999Google Scholar
  74. 74.
    Wang, Y., Lu, S., Cui, L.: Design and implementation of a SoC-based security coprocessor and program protection mechanism for WSNS. In: Proceedings of the International Conference on Wireless Sensor Network, Beijing, 15–17 November 2010, pp. 148–153. IEEE (2010)Google Scholar
  75. 75.
    Alkalbani, A.S., Mantoro, T., Tap, A.O.M.: Comparison between RSA hardware and software implementation for WSNS security schemes. In: International Conference on Information and Communication Technology for the Muslim World (ICT4M), Jakarta, 13–14 December 2010, pp. E84–E89. IEEE (2010)Google Scholar
  76. 76.
    Aranha, D., Lopez, J., Oliveira, L., Dahab, R.: NanoPBC: implementing cryptographic pairings on an 8-bit platform. In: Frutillar, C. (ed.) Conference on Hyperelliptic Curves, Discrete Logarithms, Encryption, etc., CHiLE 2009 (2009)Google Scholar
  77. 77.
    Yao, G.X., Fan, J., Cheung, R.C.C., Verbauwhede, I.: Faster pairing coprocessor architecture. In: Abdalla, M., Lange, T. (eds.) Pairing-Based Cryptography, Pairing 2012, Germany, 16–18 May 2012, vol. 7708, pp. 160–176. Springer, Heidelberg (2012)Google Scholar
  78. 78.
    Sharif, M.U., Rogawski, M., George, K.G.: Hardware-software codesign of pairing-based cryptosystems for optimal performance vs. flexibility trade-off. Cryptographic architectures embedded in reconfigurable devices, France, June 2014Google Scholar
  79. 79.
    McCusker, K., O’Connor, N.E.: Low-energy symmetric key distribution in wireless sensor networks. IEEE Trans. Dependable Secure Comput. 8, 363–376 (2010)CrossRefGoogle Scholar
  80. 80.
    Cheung, R.C.C., Duquesne, S., Fan, J., Guillermin, N., Verbauwhede, I., Yao, G.X.: FPGA implementation of pairings using residue number system and lazy reduction. In: Cryptographic Hardware and Embedded Systems – CHES 2011, Bart Preneel, Tsuyoshi Takagi, Nara, Japan, 28 September–1 October 2011, vol. 6917 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Abdulfattah M. Obeid
    • 2
    Email author
  • Manel Elleuchi
    • 1
  • Mohamed Wassim Jmal
    • 1
  • Manel Boujelben
    • 1
  • Mohamed Abid
    • 1
  • Mohammed S. BenSaleh
    • 2
  1. 1.CES Research Unit, National School of Engineers of Sfax, Digital Research Center (CRNS)Technopark SfaxSfaxTunisia
  2. 2.National Center for Electronics, Communications and PhotonicsKing Abdulaziz City for Science and TechnologyRiyadhKingdom of Saudi Arabia

Personalised recommendations