Algorithms for Finding Maximal and Maximum Cliques: A Survey

  • Faten Fakhfakh
  • Mohamed Tounsi
  • Mohamed Mosbah
  • Ahmed Hadj Kacem
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 736)

Abstract

Finding maximal and maximum cliques are well-known problems in the graph theory. They have different applications in several fields such as the analysis of social network, bioinformatics and graph coloring. They have attracted the interest of the research community. The main goal of this paper is to present a comprehensive review of the existing approaches for finding maximal and maximum cliques. It presents a comparative study of the existing algorithms based on some criteria and identifies the critical challenges. Then, it aims to motivate the future development of more efficient algorithms.

Keywords

Maximal and maximum cliques Algorithms Comparative study Challenges 

References

  1. 1.
    Abu-Khzam, F.N., Baldwin, N.E., Langston, M.A., Samatova, N.F.: On the relative efficiency of maximal clique enumeration algorithms, with applications to high-throughput computational biology. In: Research Trends in Science and Technology (2005)Google Scholar
  2. 2.
    Berry, N., Ko, T., Moy, T., Smrcka, J., Turnley, J., Wu, B.: Emergent clique formation in terrorist recruitment. In: Agent Organizations: Theory and Practice (2004)Google Scholar
  3. 3.
    Matsunaga, T., Yonemori, C., Tomita, E., Muramatsu, M.: Clique-based data mining for related genes in a biomedical database. BMC Bioinform. 10(1), 205 (2009)CrossRefGoogle Scholar
  4. 4.
    Zhang, H., Zhao, H., Cai, W., Liu, J., Zhou, W.: Using the k-core decomposition to analyze the static structure of large-scale software systems. J. Supercomput. 53(2), 352–369 (2010)CrossRefGoogle Scholar
  5. 5.
    Sun, S., Wang, Y., Liao, W., Wang, W.: Mining maximal cliques on dynamic graphs efficiently by local strategies. In: Proceedings of the 33rd International Conference on Data Engineering (ICDE), pp. 115–118. IEEE (2017)Google Scholar
  6. 6.
    Rezvanian, A., Meybodi, M.R.: Finding maximum clique in stochastic graphs using distributed learning automata. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 23(01), 1–31 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Jiang, H., Li, C.M., Manya, F.: An exact algorithm for the maximum weight clique problem in large graphs. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI), pp. 830–838 (2017)Google Scholar
  8. 8.
    Hou, B., Wang, Z., Chen, Q., Suo, B., Fang, C., Li, Z., Ives, Z.G.: Efficient maximal clique enumeration over graph data. Data Sci. Eng. 1(4), 219–230 (2016)CrossRefGoogle Scholar
  9. 9.
    Fazlali, M., Zakerolhosseini, A., Gaydadjiev, G.: Efficient datapath merging for the overhead reduction of run-time reconfigurable systems. J. Supercomput. 59(2), 636–657 (2012)CrossRefGoogle Scholar
  10. 10.
    Kuz, A., Falco, M., Giandini, R.: Social network analysis: a practical case study. Computación y Sistemas 20(1), 89–106 (2016)CrossRefGoogle Scholar
  11. 11.
    Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in sparse graphs in near-optimal time. In: Proceedings of the International Symposium on Algorithms and Computation (ISAAC), Jeju Island, Korea, 15–17 December 2010, pp. 403–414. Springer, HeidelbergGoogle Scholar
  12. 12.
    Kitchenham, B.: Procedures for performing systematic reviews. Keele, UK, Keele University 33(2004), 1–26 (2004)Google Scholar
  13. 13.
    Segundo, P.S., Lopez, A., Pardalos, P.M.: A new exact maximum clique algorithm for large and massive sparse graphs. Comput. Oper. Res. 66, 81–94 (2016)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Segundo, P.S., Rodríguez-Losada, D., Jiménez, A.: An exact bit-parallel algorithm for the maximum clique problem. Comput. Oper. Res. 38(2), 571–581 (2011)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Schmidt, M.C., Samatova, N.F., Thomas, K., Park, B.H.: A scalable, parallel algorithm for maximal clique enumeration. J. Parallel Distrib. Comput. 69(4), 417–428 (2009)CrossRefGoogle Scholar
  16. 16.
    Conte, A., Virgilio, R.D., Maccioni, A., Patrignani, M., Torlone, R.: Finding all maximal cliques in very large social networks. In: Proceedings of the 19th International Conference on Extending Database Technology (EDBT), pp. 173–184 (2016)Google Scholar
  17. 17.
    Wu, B., Yang, S., Zhao, H., Wang, B.: A distributed algorithm to enumerate all maximal cliques in mapreduce. In: Proceedings of the Fourth International Conference on Frontier of Computer Science and Technology (FCST), pp. 45–51. IEEE (2009)Google Scholar
  18. 18.
    Mukherjee, A.P., Xu, P., Tirthapura, S.: Enumeration of maximal cliques from an uncertain graph. IEEE Trans. Knowl. Data Eng. 29(3), 543–555 (2017)CrossRefGoogle Scholar
  19. 19.
    Shimizu, S., Yamaguchi, K., Saitoh, T., Masuda, S.: Fast maximum weight clique extraction algorithm: optimal tables for branch-and-bound. Discret. Appl. Math. 223, 120–134 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Luo, C., Yu, J., Yu, D., Cheng, X.: Distributed algorithms for maximum clique in wireless networks. In: Proceedings of the 11th International Conference on Mobile Ad-hoc and Sensor Networks (MSN), pp. 222–226 (2015)Google Scholar
  21. 21.
    Xu, Y., Cheng, J., Fu, A.W.C.: Distributed maximal clique computation and management. IEEE Trans. Serv. Comput. 9(1), 110–122 (2016)Google Scholar
  22. 22.
    Das, A., Svendsen, M., Tirthapura, S.: Change-sensitive algorithms for maintaining maximal cliques in a dynamic graph. arXiv preprint arXiv:1601.06311 (2016)
  23. 23.
    Cheng, J., Ke, Y., Fu, A.W.C., Yu, J.X., Zhu, L.: Finding maximal cliques in massive networks. ACM Trans. Database Syst. (TODS) 36(4), 21 (2011)Google Scholar
  24. 24.
    Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973)CrossRefMATHGoogle Scholar
  25. 25.
    Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press, Cambridge (2000)CrossRefMATHGoogle Scholar
  26. 26.
    Ehrig, H., Rozenberg, G., Kreowski, H.J.: Handbook of Graph Grammars and Computing by Graph Transformation, vol. 3. World Scientific, River Edge (1999)Google Scholar
  27. 27.
    Leavens, G.T., Abrial, J.R., Batory, D., Butler, M., Coglio, A., Fisler, K., Hehner, E., Jones, C., Miller, D., Peyton-Jones, S., Sitaraman, M., Smith, D.R., Stump, A.: Roadmap for enhanced languages and methods to aid verification. In: Proceedings of the 5th International Conference on Generative Programming and Component Engineering (GPCE), pp. 221–236. ACM (2006)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Faten Fakhfakh
    • 1
  • Mohamed Tounsi
    • 1
  • Mohamed Mosbah
    • 2
  • Ahmed Hadj Kacem
    • 1
  1. 1.ReDCAD LaboratoryUniversity of SfaxSfaxTunisia
  2. 2.LaBRI Laboratory, Bordeaux INPUniversity of BordeauxBordeauxFrance

Personalised recommendations