Abnormal High-Level Event Recognition in Parking lot

  • Najla Bouarada Ghrab
  • Rania Rebai Boukhriss
  • Emna Fendri
  • Mohamed Hammami
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 736)

Abstract

In this paper, we presented an approach to automatically detect abnormal high-level events in a parking lot. A high-level event or a scenario is a combination of simple events with spatial, temporal and logical relations. We proposed to define the simple events through a spatio-temporal analysis of features extracted from a low-level processing. The low level processing involves detecting, tracking and classifying moving objects. To naturally model the relations between simpler events, a Petri Nets model was used. The experimental results based on recorded parking video data sets and public data sets illustrate the performance of our approach.

Keywords

Object classification Simple event Scenario Abnormal event 

References

  1. 1.
    Kim, I.S., Choi, H.S., Yi, K.M., et al.: Intelligent visual surveillance a survey. Int. J. Control Autom. Syst. 8(5), 926–939 (2010)CrossRefGoogle Scholar
  2. 2.
    Vishwakarma, S., Agrawal, A.: A survey on activity recognition and behavior understanding in video surveillance. Vis. Comput. 29(10), 983–1009 (2013)CrossRefGoogle Scholar
  3. 3.
    Cheng, Y.H., Wang, J.: A motion image detection method based on the inter-frame difference method. Appl. Mech. Mater. 490–491, 1283–1286 (2014)Google Scholar
  4. 4.
    Jian-Ping, T., Xiao-lan, L., Jun, L.: Moving object detection and identification method based on vision. Int. J. Secur. Appl. 10(3), 101–110 (2016)Google Scholar
  5. 5.
    Hariyono, J., Hoang, V.D., Jo, K.H.: Motion segmentation using optical flow for pedestrian detection from moving vehicle. In: Hwang, D., Jung, J.J., Nguyen, N.T. (eds.) Computational Collective Intelligence. Technologies and Applications. ICCCI 2014. LNCS, vol. 8733. Springer, Cham (2014)Google Scholar
  6. 6.
    Kushwaha, A.K.S., Srivastava, S., Srivastava, R.: Multi-view human activity recognition based on silhouette and uniform rotation invariant local binary patterns. Multimed. Syst. J. 32(4), 451–467 (2017)CrossRefGoogle Scholar
  7. 7.
    Gargi, P., Rajbabu, V.: Mean LBP and modified fuzzy C-means weighted hybrid feature for illumination invariant meanshift tracking. Signal Image Video Process. 11(4), 665–672 (2017)CrossRefGoogle Scholar
  8. 8.
    Yang, Y., Cao, Q.: A fast feature points-based object tracking method for robot grasp. Int. J. Adv. Robot. Syst. 10(3) (2013)Google Scholar
  9. 9.
    Dedeoğlu, Y., Töreyin, B.U., Güdükbay, U., Çetin, A.E.: Silhouette-based method for object classification and human action recognition in video. In: Huang, T.S., et al. (eds.) Computer Vision in Human-Computer Interaction. ECCV 2006. LNCS, vol. 3979, pp. 64–77. Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Moctezuma, D., Conde, C., Diego, I.M., Cabello, E.: Person detection in surveillance environment with HoGG: Gabor filters and histogram of oriented gradient. In: ICCV Workshops, pp. 1793–1800 (2011)Google Scholar
  11. 11.
    Wang, L., Hu, W., Tan, T.: Recent developments in human motion analysis. Pattern Recognit. 36(3), 585–601 (2003)CrossRefGoogle Scholar
  12. 12.
    Zhang, Z., Cai, Y., Huang, K., Tan, T.: Real-time moving object classification with automatic scene division. In: IEEE International Conference on Image Processing, pp. 149–152 (2007)Google Scholar
  13. 13.
    Chakraborty, B., Bagdanov, A.D., Gonzàlez, J., Roca, X.: Human action recognition using an ensemble of body-part detectors. Expert Syst. 30(2), 101–114 (2012)CrossRefGoogle Scholar
  14. 14.
    Bobick, F., Davis, W.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001)CrossRefGoogle Scholar
  15. 15.
    Wang, H., Kläser, A., Schmid, C., Cheng-Lin, L.: Dense trajectories and motion boundary descriptors for action recognition. Int. J. Comput. Vis. 103(1), 60–79 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lv, F., Nevatia, R.: Single view human action recognition using key pose matching and Viterbi path searching. In: IEEE Conference on Computer Vision and Pattern Recognition, p. 18 (2007)Google Scholar
  17. 17.
    Wang, Y., Cao, K: A proactive complex event processing method for large-scale transportation Internet of Things. Int. J. Distrib. Sens. Netw. 10(3) (2014)Google Scholar
  18. 18.
    Bansal, N.K., Feng, X., Zhang, W., Wei, W., Zhao, Y.: Modeling temporal pattern and event detection using Hidden Markov Model with application to a sludge bulking data. Procedia Comput. Sci. 12, 218–223 (2012)CrossRefGoogle Scholar
  19. 19.
    Zhang, Z., Tan, T., Huang, K.: An extended grammar system for learning and recognizing complex visual events. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 240–255 (2011)CrossRefGoogle Scholar
  20. 20.
    Ghanem, N., DeMenthon, D., Doermann, D., Davis, L.: Representation and recognition of events in surveillance video using Petri nets. In: Conference on Computer Vision and Pattern Recognition Workshop, pp. 112–121 (2004)Google Scholar
  21. 21.
    Boukhriss, R.R., Fendri, E., Hammami, M.: Moving object classification in infrared and visible spectra. In: International Conference on Machine Vision (2016)Google Scholar
  22. 22.
    Hammami, M., Jarraya, S.K., Ben-Abdallah, H.: On line background modeling for moving object segmentation in dynamic scene. Multim. Tools Appl. 63(3), 899–926 (2013)CrossRefGoogle Scholar
  23. 23.
    Yang, T., Li, S.Z., Pan, Q., Li, J.: Real-time multiple objects tracking with occlusion handling in dynamic scenes. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2005)Google Scholar
  24. 24.
    Uijlings, J., Duta, I.C., Sangineto, E., Sebe, N.: Video classification with densely extracted HOG/HOF/MBH features: an evaluation of the accuracy/computational efficiency trade-off. Int. J. Multimed. Inf. Retr. 4(1), 33–44 (2014)CrossRefGoogle Scholar
  25. 25.
    Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence (1981)Google Scholar
  26. 26.
    Allen, J.F., Ferguson, F.: Actions and events in interval temporal logical. J. Log. Comput. 4(5), 531–579 (1994)CrossRefMATHGoogle Scholar
  27. 27.
    Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: IEEE International Conference on Computer Vision (2005)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Najla Bouarada Ghrab
    • 1
  • Rania Rebai Boukhriss
    • 1
  • Emna Fendri
    • 2
  • Mohamed Hammami
    • 2
  1. 1.MIRACL Laboratory, ISIMSUniversity of SfaxSakiet Ezzeit SfaxTunisia
  2. 2.MIRACL Laboratory, FSSUniversity of SfaxSfaxTunisia

Personalised recommendations