Optical Spectroscopy

Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 100)

Abstract

Confinement of particles in Penning traps yields two major advantages for spectroscopy, namely localisation for extended periods (i.e. the particle position is constant and well-known) and cooling (which leads to small Doppler shifts and broadening of transitions). Also, the particle ensemble can often be treated as a point-like source, which facilitates detection. We give a short account of the important aspects to optical spectroscopy when performed in a Penning trap.

References

  1. 1.
    G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps (Springer, Heidelberg, 2005)Google Scholar
  2. 2.
    G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps II (Springer, Heidelberg, 2009)CrossRefGoogle Scholar
  3. 3.
    J.J. Bollinger, S.L. Gilbert, W.M. Itano, D.J. Wineland, Frequency standards utilizing penning traps, in Frequency Standards and Metrology (Springer, Berlin, 1989)Google Scholar
  4. 4.
    F. Riehle, Frequency Standards: Basics and Applications (Wiley VCH, Weinheim, 2006)Google Scholar
  5. 5.
    R.C. Thomspon, High-resolution laser spectroscopy of atomic systems. Rep. Prog. Phys. 48, 531 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    W. Demtröder, Laser Spectroscopy (Springer, Heidelberg, 2003)CrossRefGoogle Scholar
  7. 7.
    I. Prochazka, K. Hamal, B. Sopko, Recent achievements in single photon detectors and their applications. J. Mod. Opt. 51, 1289 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    L. Gruber, J.P. Holder, D. Schneider, Formation of strongly coupled plasmas from multi-component ions in a Penning trap. Phys. Scr. 71, 60 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    T. Murböck et al., Rapid crystallization of externally produced ions in a Penning trap. Phys. Rev. A 94, 043410 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    S. Bharadia, M. Vogel, D.M. Segal, R.C. Thompson, Dynamics of laser-cooled Ca\(^+\) ions in a Penning trap with a rotating wall. Appl. Phys. B 107, 1105 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    L. Gruber et al., Evidence for highly charged ion coulomb crystallization in multicomponent strongly coupled plasmas. Phys. Rev. Lett. 86, 636 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    S. Mavadia et al., Control of the conformations of ion Coulomb crystals in a Penning trap. Nat. Comm. 4, 2571 (2013)CrossRefGoogle Scholar
  13. 13.
    D. von Lindenfels et al., Half-open Penning trap with efficient light collection for precision laser spectroscopy of highly charged ions. Hyp. Int. 227, 197 (2014)ADSGoogle Scholar
  14. 14.
    D. Von Lindenfels et al., Bound electron \(g\)-factor measurement by double-resonance spectroscopy on a fine-structure transition. Can. J. Phys. 89, 79 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    D. von Lindenfels et al., Experimental access to higher-order Zeeman effects by precision spectroscopy of highly charged ions in a Penning trap. Phys. Rev. A 87, 023412 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    R. Jöhren et al., APDs as single-photon detectors for visible and near-infrared wavelengths down to Hz rates. J. Instrum. 7, P02015 (2012)CrossRefGoogle Scholar
  17. 17.
    R. Jöhren, Spectroscopy of the hyperfine transition in lithium-like bismuth at the ESR at GSI and an APD-based single-photon detector for laser spectroscopy on highly charged ions, Ph.D. thesis, University of Münster (2013)Google Scholar
  18. 18.
    D.H. Slichter et al., UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap. Opt. Express 25, 8705 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    L. Jiang, W.B. Whitten, S. Pau, A planar ion trapping microdevice with integrated waveguides for optical detection. Opt. Express 19, 3037 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    S. Stahl et al., A planar Penning trap. Eur. Phys. J. D 32, 139 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    J.R. Castrejon-Pita, R.C. Thompson, Proposal for a planar Penning ion trap. Phys. Rev. A 72, 013405 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    F. Galve, P. Fernandez, G. Werth, Operation of a planar Penning trap. Eur. Phys. J. D 40, 201 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    P. Bushev, S. Stahl, R. Natali, G. Marx, E. Stachowska, G. Werth, M. Hellwig, F. Schmidt-Kaler, Electrons in a cryogenic planar Penning trap and experimental challenges for quantum processing. Eur. Phys. J. D 50, 97 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    J. Goldmann, G. Gabrielse, Optimized planar Penning traps for quantum information studies. Phys. Rev. A 81, 052335 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    J.R. Castrejon-Pita et al., Novel designs for Penning ion traps. J. Mod. Opt. 11, 1581 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    R. Maiwald, D. Leibfried, J. Britton, J.C. Bergquist, G. Leuchs, D.J. Wineland, Stylus ion trap for enhanced access and sensing. Nat. Phys. 5, 551 (2009)CrossRefGoogle Scholar
  27. 27.
    N. Yu, W. Nagourney, H. Dehmelt, Demonstration of new Paul-Straubel trap for trapping single ions. J. Appl. Phys. 69, 3779 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    C. Schrama, E. Peik, W. Smith, H. Walther, Novel miniature ion traps. Opt. Commun. 101, 32 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    L. Deslauriers et al., Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97, 103007 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    M.J. Goeckner, J. Goree, T.E. Sheridan, Saturation broadening of laser-induced fluorescence from plasma ions. Rev. Sci. Inst. 64, 996 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    D. Budker, D.F. Kimball, D.P. DeMille, Atomic Physics (Oxford University Press, Oxford, 2004)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany

Personalised recommendations