• Scott L. Zuckerman
  • Ilya Laufer
  • Mark BilskyEmail author


The spinal column is the most common site of bony metastases in cancer patients. As advances in systemic treatment improve survival, more patients with cancer are living with spinal metastases. Optimal treatment of this complex patient population requires a systematic framework crossing multiple scopes of care. Herein we describe the neurologic, oncologic, mechanical, and systemic (NOMS) decision framework designed to facilitate therapeutic decisions for patients with spinal metastases. Essential grading scales and seminal publications that helped create the NOMS paradigm are reviewed. While using the NOMS variables, important nuances are discussed such as duration and severity of neurologic deficit, separation surgery, and stabilization techniques, in addition to representative cases. Overall, the NOMS framework succinctly determines optimal treatment of patients harboring metastatic spine disease to achieve local tumor control, pain relief, and restoration or preservation of neurologic function.


Decision-making Classification system Spinal metastases Spinal tumors Pathologic fracture Percutaneous instrumentation Minimally invasive Stereotactic radiosurgery Survival 


  1. 1.
    Hatrick NC, Lucas JD, Timothy AR, Smith MA. The surgical treatment of metastatic disease of the spine. Radiother Oncol. 2000;56(3):335–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Ortiz Gomez JA. The incidence of vertebral body metastases. Int Orthop. 1995;19(5):309–11.CrossRefPubMedGoogle Scholar
  3. 3.
    Jacobs WB, Perrin RG. Evaluation and treatment of spinal metastases: an overview. Neurosurg Focus. 2001;11(6):e10.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Steinmetz MP, Mekhail A, Benzel EC. Management of metastatic tumors of the spine: strategies and operative indications. Neurosurg Focus. 2001;11(6):e2.CrossRefPubMedGoogle Scholar
  5. 5.
    Harel R, Angelov L. Spine metastases: current treatments and future directions. Eur J Cancer. 2010;46(15):2696–707.CrossRefPubMedGoogle Scholar
  6. 6.
    Choi D, Crockard A, Bunger C, Harms J, Kawahara N, Mazel C, et al. Review of metastatic spine tumour classification and indications for surgery: the consensus statement of the Global Spine Tumour Study Group. Eur Spine J. 2010;19(2):215–22.CrossRefPubMedGoogle Scholar
  7. 7.
    Fehlings MG, Nater A, Holmer H. Cost-effectiveness of surgery in the management of metastatic epidural spinal cord compression: a systematic review. Spine (Phila Pa 1976). 2014;39(22 Suppl 1):S99–S105.CrossRefGoogle Scholar
  8. 8.
    Yoshihara H, Yoneoka D. Trends in the surgical treatment for spinal metastasis and the in-hospital patient outcomes in the United States from 2000 to 2009. Spine J. 2014;14(9):1844–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Patchell RA, Tibbs PA, Regine WF, Payne R, Saris S, Kryscio RJ, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet. 2005;366(9486):643–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Yao KC, Boriani S, Gokaslan ZL, Sundaresan N. En bloc spondylectomy for spinal metastases: a review of techniques. Neurosurg Focus. 2003;15(5):E6.CrossRefPubMedGoogle Scholar
  11. 11.
    Laufer I, Iorgulescu JB, Chapman T, Lis E, Shi W, Zhang Z, et al. Local disease control for spinal metastases following “separation surgery” and adjuvant hypofractionated or high-dose single-fraction stereotactic radiosurgery: outcome analysis in 186 patients. J Neurosurg Spine. 2013;18(3):207–14.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Moussazadeh N, Laufer I, Yamada Y, Bilsky MH. Separation surgery for spinal metastases: effect of spinal radiosurgery on surgical treatment goals. Cancer Control. 2014;21(2):168–74.CrossRefPubMedGoogle Scholar
  13. 13.
    American Spinal Injury Association. International standards for neurological classification of spinal cord injury (ISNCSCI). 2016.
  14. 14.
    McCormick PC, Torres R, Post KD, Stein BM. Intramedullary ependymoma of the spinal cord. J Neurosurg. 1990;72(4):523–32.CrossRefPubMedGoogle Scholar
  15. 15.
    Aminoff MJ, Logue V. Clinical features of spinal vascular malformations. Brain. 1974;97(1):197–210.CrossRefPubMedGoogle Scholar
  16. 16.
    Bilsky MH, Laufer I, Fourney DR, Groff M, Schmidt MH, Varga PP, et al. Reliability analysis of the epidural spinal cord compression scale. J Neurosurg Spine. 2010;13(3):324–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Bilsky MH, Boland PJ, Panageas KS, Woodruff JM, Brennan MF, Healey JH. Intralesional resection of primary and metastatic sarcoma involving the spine: outcome analysis of 59 patients. Neurosurgery. 2001;49(6):1277–86.CrossRefPubMedGoogle Scholar
  18. 18.
    Laufer I, Zuckerman SL, Bird JE, Bilsky MH, Lazary A, Quraishi NA, et al. Predicting neurologic recovery after surgery in patients with deficits secondary to MESCC: systematic review. Spine (Phila Pa 1976). 2016;41(Suppl 20):S224–S30.CrossRefGoogle Scholar
  19. 19.
    Gerszten PC, Mendel E, Yamada Y. Radiotherapy and radiosurgery for metastatic spine disease: what are the options, indications, and outcomes. Spine (Phila Pa 1976). 2009;34(22S):S78–92.CrossRefGoogle Scholar
  20. 20.
    Maranzano E, Latini P. Effectiveness of radiation therapy without surgery in metastatic spinal cord compression: final results from a prospective trial. Int J Radiat Oncol Biol Phys. 1995;32(4):959–67.CrossRefPubMedGoogle Scholar
  21. 21.
    Rades D, Conde-Moreno AJ, Cacicedo J, Segedin B, Rudat V, Schild SE. Excellent outcomes after radiotherapy alone for malignant spinal cord compression from myeloma. Radiol Oncol. 2016;50(3):337–40.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Rades D, Conde-Moreno AJ, Cacicedo J, Segedin B, Rudat V, Schild SE. Radiation therapy alone provides excellent outcomes for spinal cord compression from vertebral lymphoma. Anticancer Res. 2016;36(6):3081–3.PubMedGoogle Scholar
  23. 23.
    Bolm L, Janssen S, Bartscht T, Rades D. Radiotherapy alone for malignant spinal cord compression in young men with seminoma. Anticancer Res. 2016;36(4):2033–4.PubMedGoogle Scholar
  24. 24.
    Rades D, Panzner A, Rudat V, Karstens JH, Schild SE. Dose escalation of radiotherapy for metastatic spinal cord compression (MSCC) in patients with relatively favorable survival prognosis. Strahlenther Onkol. 2011;187(11):729–35.CrossRefPubMedGoogle Scholar
  25. 25.
    Laufer I, Rubin DG, Lis E, Cox BW, Stubblefield MD, Yamada Y, et al. The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncologist. 2013;18(6):744–51.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yamada Y, Katsoulakis E, Laufer I, Lovelock M, Barzilai O, McLaughlin LA, et al. The impact of histology and delivered dose on local control of spinal metastases treated with stereotactic radiosurgery. Neurosurg Focus. 2017;42(1):E6.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chang EL, Shiu AS, Mendel E, Mathews LA, Mahajan A, Allen PK, et al. Phase I/II study of stereotactic body radiotherapy for spinal metastasis and its pattern of failure. J Neurosurg Spine. 2007;7(2):151–60.CrossRefGoogle Scholar
  28. 28.
    Moussazadeh N, Lis E, Katsoulakis E, Kahn S, Svoboda M, DiStefano NM, et al. Five-year outcomes of high-dose single-fraction spinal stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2015;93(2):361–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Ghia AJ, Chang EL, Bishop AJ, Pan HY, Boehling NS, Amini B, et al. Single-fraction versus multifraction spinal stereotactic radiosurgery for spinal metastases from renal cell carcinoma: secondary analysis of Phase I/II trials. J Neurosurg Spine. 2016;24(5):829–36.PubMedGoogle Scholar
  30. 30.
    Bilsky MH, Laufer I, Burch S. Shifting paradigms in the treatment of metastatic spine disease. Spine (Phila Pa 1976). 2009;34(22 Suppl):S101–7.CrossRefGoogle Scholar
  31. 31.
    Caruso JP, Cohen-Inbar O, Bilsky MH, Gerszten PC, Sheehan JP. Stereotactic radiosurgery and immunotherapy for metastatic spinal melanoma. Neurosurg Focus. 2015;38(3):E6.CrossRefPubMedGoogle Scholar
  32. 32.
    Wang E, Karedan T, Perez CA. New insights in the treatment of radioiodine refractory differentiated thyroid carcinomas: to lenvatinib and beyond. Anticancer Drugs. 2015;26(7):689–97.CrossRefPubMedGoogle Scholar
  33. 33.
    Greenhalgh J, Dwan K, Boland A, Bates V, Vecchio F, Dundar Y, et al. First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer. Cochrane Database Syst Rev. 2016;(5):CD010383.Google Scholar
  34. 34.
    Choueiri TK, Escudier B, Powles T, Tannir NM, Mainwaring PN, Rini BI, et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2016;17(7):917–27.CrossRefPubMedGoogle Scholar
  35. 35.
    Fisher CG, DiPaola CP, Ryken TC, Bilsky MH, Shaffrey CI, Berven SH, et al. A novel classification system for spinal instability in neoplastic disease: an evidence-based approach and expert consensus from the Spine Oncology Study Group. Spine (Phila Pa 1976). 2010;35:E1221–9.CrossRefGoogle Scholar
  36. 36.
    Fourney DR, Frangou EM, Ryken TC, Dipaola CP, Shaffrey CI, Berven SH, et al. Spinal instability neoplastic score: an analysis of reliability and validity from the spine oncology study group. J Clin Oncol. 2011;29(22):3072–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Burton AW, Mendoza T, Gebhardt R, Hamid B, Nouri K, Perez-Toro M, et al. Vertebral compression fracture treatment with vertebroplasty and kyphoplasty: experience in 407 patients with 1,156 fractures in a tertiary cancer center. Pain Med. 2011;12(12):1750–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Dalbayrak S, Onen MR, Yilmaz M, Naderi S. Clinical and radiographic results of balloon kyphoplasty for treatment of vertebral body metastases and multiple myelomas. J Clin Neurosci. 2010;17(2):219–24.CrossRefPubMedGoogle Scholar
  39. 39.
    Berenson J, Pflugmacher R, Jarzem P, Zonder J, Schechtman K, Tillman JB, et al. Balloon kyphoplasty versus non-surgical fracture management for treatment of painful vertebral body compression fractures in patients with cancer: a multicentre, randomised controlled trial. Lancet Oncol. 2011;12(3):225–35.CrossRefPubMedGoogle Scholar
  40. 40.
    Tseng YY, Lo YL, Chen LH, Lai PL, Yang ST. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of pain induced by metastatic spine tumor. Surg Neurol. 2008;70 Suppl 1:S1:78–83; discussion S1:83–4.CrossRefGoogle Scholar
  41. 41.
    Mendel E, Bourekas E, Gerszten P, Golan JD. Percutaneous techniques in the treatment of spine tumors: what are the diagnostic and therapeutic indications and outcomes? Spine. 2009;34(22 Suppl):S93–100.CrossRefPubMedGoogle Scholar
  42. 42.
    Gerszten PC. Spine metastases: from radiotherapy, surgery, to radiosurgery. Neurosurgery. 2014;61(Suppl 1):16–25.CrossRefPubMedGoogle Scholar
  43. 43.
    Jensen ME, Kallmes DE. Percutaneous vertebroplasty in the treatment of malignant spine disease. Cancer J. 2002;8(2):194–206.CrossRefPubMedGoogle Scholar
  44. 44.
    Huisman M, van der Velden JM, van Vulpen M, van den Bosch MA, Chow E, Oner FC, et al. Spinal instability as defined by the spinal instability neoplastic score is associated with radiotherapy failure in metastatic spinal disease. Spine J. 2014;14(12):2835–40.CrossRefPubMedGoogle Scholar
  45. 45.
    Lam TC, Uno H, Krishnan M, Lutz S, Groff M, Cheney M, et al. Adverse outcomes after palliative radiation therapy for uncomplicated spine metastases: role of spinal instability and single-fraction radiation therapy. Int J Radiat Oncol Biol Phys. 2015;93(2):373–81.CrossRefPubMedGoogle Scholar
  46. 46.
    Bohl DD, Shen MR, Mayo BC, Massel DH, Long WW, Modi KD, et al. Malnutrition predicts infectious and wound complications following posterior lumbar spinal fusion. Spine (Phila Pa 1976). 2016;41(21):1693–9.CrossRefGoogle Scholar
  47. 47.
    Goodwin CR, Schoenfeld AJ, Abu-Bonsrah NA, Garzon-Muvdi T, Sankey EW, Harris MB, et al. Reliability of a spinal metastasis prognostic score to model 1-year survival. Spine J. 2016;16(9):1102–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Tokuhashi Y, Matsuzaki H, Oda H, Oshima M, Ryu J. A revised scoring system for preoperative evaluation of metastatic spine tumor prognosis. Spine. 2005;30(19):2186–91.CrossRefPubMedGoogle Scholar
  49. 49.
    Tomita K, Kawahara N, Kobayashi T, Yoshida A, Murakami H, Akamaru T. Surgical strategy for spinal metastases. Spine. 2001;26(3):298–306.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Paulino Pereira NR, Janssen SJ, van Dijk E, Harris MB, Hornicek FJ, Ferrone ML, et al. Development of a prognostic survival algorithm for patients with metastatic spine disease. J Bone Joint Surg Am. 2016;98(21):1767–76.CrossRefPubMedGoogle Scholar
  51. 51.
    Bilsky MH, Laufer I, Matros E, Yamada J, Rusch VW. Advanced lung cancer: aggressive surgical therapy vertebral body involvement. Thorac Surg Clin. 2014;24(4):423–31.CrossRefPubMedGoogle Scholar
  52. 52.
    Bate BG, Khan NR, Kimball BY, Gabrick K, Weaver J. Stereotactic radiosurgery for spinal metastases with or without separation surgery. J Neurosurg Spine. 2015;22(4):409–15.CrossRefPubMedGoogle Scholar
  53. 53.
    Amankulor NM, Xu R, Iorgulescu JB, Chapman T, Reiner AS, Riedel E, et al. The incidence and patterns of hardware failure after separation surgery in patients with spinal metastatic tumors. Spine J. 2014;14(9):1850–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Tatsui CE, Stafford RJ, Li J. Utilizaiton of laser interstitial thermotherapy guided by real-time thermal MRI as an alternative to separation surgery in the management of spinal metastases. J Neurosurg Spine. 2015;23(4):400–11.PubMedGoogle Scholar
  55. 55.
    Tatsui CE, Lee SH, Amini B, Rao G, Suki D, Oro M, et al. Spinal laser interstitial thermal therapy: a novel alternative to surgery for metastatic epidural spinal cord compression. Neurosurgery. 2016;79(Suppl 1):S73–82.CrossRefPubMedGoogle Scholar
  56. 56.
    Tatsui CE, Belsuzarri TA, Oro M, Rhines LD, Li J, Ghia AJ, et al. Percutaneous surgery for treatment of epidural spinal cord compression and spinal instability: technical note. Neurosurg Focus. 2016;41(4):E2.CrossRefPubMedGoogle Scholar
  57. 57.
    Jansson KA, Bauer HC. Survival, complications and outcome in 282 patients operated for neurological deficit due to thoracic or lumbar spinal metastases. Eur Spine J. 2006;15(2):196–202.CrossRefPubMedGoogle Scholar
  58. 58.
    Itshayek E, Yamada J, Bilsky M, Schmidt M, Shaffrey C, Gerszten P, et al. Timing of surgery and radiotherapy in the management of metastatic spine disease: a systematic review. Int J Oncol. 2010;36(3):533–44.PubMedGoogle Scholar
  59. 59.
    Ghogawala Z, Mansfield FL, Borges LF. Spinal radiation before surgical decompression adversely affects outcomes of surgery for symptomatic metastatic spinal cord compression. Spine (Phila Pa 1976). 2001;26(7):818–24.CrossRefGoogle Scholar
  60. 60.
    Sundaresan N, Rothman A, Manhart K, Kelliher K. Surgery for solitary metastases of the spine: rationale and results of treatment. Spine. 2002;27(16):1802–6.CrossRefPubMedGoogle Scholar
  61. 61.
    Disa JJ, Smith AW, Bilsky MH. Management of radiated reoperative wounds of the cervicothoracic spine: the role of the trapezius turnover flap. Ann Plast Surg. 2001;47(4):394–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Burval DJ, McLain RF, Milks R, Inceoglu S. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine (Phila Pa 1976). 2007;32(10):1077–83.CrossRefGoogle Scholar
  63. 63.
    Sawakami K, Yamazaki A, Ishikawa S, Ito T, Watanabe K, Endo N. Polymethylmethacrylate augmentation of pedicle screws increases the initial fixation in osteoporotic spine patients. J Spinal Disord Tech. 2012;25(2):E28–35.CrossRefPubMedGoogle Scholar
  64. 64.
    Moussazadeh N, Rubin DG, McLaughlin L, Lis E, Bilsky MH, Laufer I. Short-segment percutaneous pedicle screw fixation with cement augmentation for tumor-induced spinal instability. Spine J. 2015;15(7):1609–17.CrossRefPubMedGoogle Scholar
  65. 65.
    Versteeg AL, Verlaan JJ, de Baat P, Jiya TU, Stadhouder A, Diekerhof CH, et al. Complications after percutaneous pedicle screw fixation for the treatment of unstable spinal metastases. Ann Surg Oncol. 2016;23(7):2343–9.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kwan MK, Lee CK, Chan CY. Minimally invasive spinal stabilization using fluoroscopic-guided percutaneous screws as a form of palliative surgery in patients with spinal metastasis. Asian Spine J. 2016;10(1):99–110.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Zairi F, Vielliard MH, Bouras A, Karnoub MA, Marinho P, Assaker R. Long-segment percutaneous screw fixation for thoracolumbar spine metastases: a single centre experience. J Neurosurg Sci. 2017;61(4):365–70.PubMedGoogle Scholar
  68. 68.
    Liu G, Hasan MY, Wong HK. Minimally invasive iliac screw fixation in treating painful metastatic lumbosacral deformity: a technique description and clinical results. Eur Spine J. 2016;25(12):4043–51.CrossRefPubMedGoogle Scholar
  69. 69.
    Lau D, Chou D. Posterior thoracic corpectomy with cage reconstruction for metastatic spinal tumors: comparing the mini-open approach to the open approach. J Neurosurg Spine. 2015;23(2):217–27.CrossRefPubMedGoogle Scholar
  70. 70.
    Miscusi M, Polli FM, Forcato S, Ricciardi L, Frati A, Cimatti M, et al. Comparison of minimally invasive surgery with standard open surgery for vertebral thoracic metastases causing acute myelopathy in patients with short- or mid-term life expectancy: surgical technique and early clinical results. J Neurosurg Spine. 2015;22(5):518–25.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neurological SurgeryVanderbilt University Medical CenterNashvilleUSA
  2. 2.Department of NeurosurgeryMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations