Relative Chemo-, Hormonal, and Immunosensitivity

  • Max Vaynrub
  • John H. HealeyEmail author


Familiarity with the relative chemo-, hormonal, and immunosensitivity of metastatic neoplasms is indispensable for surgeons managing spinal metastases. Although the spine surgeon may not necessarily be dictating the specifics of adjuvant treatment, it is imperative that he/she understands the anticipated caliber, timeframe, and durability of response, as well as the patient’s projected survival, in order to make an informed decision regarding management of the patient’s spinal lesions. Sensitivity to systemic therapy is a dynamic concept, which evolves over the course of the disease and can vary between different lesions and different time points. Appropriate indications, timing, and technique of biopsy are crucial to determining sensitivity and guiding treatment. The availability or lack thereof of effective systemic therapeutic options can alter the goals and timing of surgery. We discuss the general concepts of sensitivity, biopsy, and response assessment, as well as specific concepts in sensitivity to therapy in the cancer subtypes commonly encountered with spinal metastases.


Chemotherapy Hormonal therapy Immunotherapy Spine Metastasis Sensitivity Resistance Biopsy Bisphosphonate Denosumab 


  1. 1.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.CrossRefPubMedGoogle Scholar
  2. 2.
    Vassiliou V, Andreopoulos D, Frangos S, Tselis N, Giannopoulou E, Lutz S. Bone metastases: assessment of therapeutic response through radiological and nuclear medicine imaging modalities. Clin Oncol (R Coll Radiol). 2011;23(9):632–45.CrossRefGoogle Scholar
  3. 3.
    Vogel CL, Schoenfelder J, Shemano I, Hayes DF, Gams RA. Worsening bone scan in the evaluation of antitumor response during hormonal therapy of breast cancer. J Clin Oncol. 1995;13(5):1123–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Coleman RE, Mashiter G, Whitaker KB, Moss DW, Rubens RD, Fogelman I. Bone scan flare predicts successful systemic therapy for bone metastases. J Nucl Med. 1988;29(8):1354–9.PubMedGoogle Scholar
  5. 5.
    Hamaoka T, Costelloe CM, Madewell JE, Liu P, Berry DA, Islam R, et al. Tumour response interpretation with new tumour response criteria vs the World Health Organisation criteria in patients with bone-only metastatic breast cancer. Br J Cancer. 2010;102(4):651–7.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hayashi N, Costelloe CM, Hamaoka T, Wei C, Niikura N, Theriault RL, et al. A prospective study of bone tumor response assessment in metastatic breast cancer. Clin Breast Cancer. 2013;13(1):24–30.CrossRefPubMedGoogle Scholar
  7. 7.
    Woolf DK, Padhani AR, Makris A. Assessing response to treatment of bone metastases from breast cancer: what should be the standard of care? Ann Oncol. 2015;26(6):1048–57.CrossRefPubMedGoogle Scholar
  8. 8.
    Costelloe CM, Chuang HH, Madewell JE, Ueno NT. Cancer response criteria and bone metastases: RECIST 1.1, MDA and PERCIST. J Cancer. 2010;1:80–92.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Du Y, Cullum I, Illidge TM, Ell PJ. Fusion of metabolic function and morphology: sequential [18F]fluorodeoxyglucose positron-emission tomography/computed tomography studies yield new insights into the natural history of bone metastases in breast cancer. J Clin Oncol. 2007;25(23):3440–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Min SJ, Jang HJ, Kim JH. Comparison of the RECIST and PERCIST criteria in solid tumors: a pooled analysis and review. Oncotarget. 2016;7(19):27848–54.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bauerle T, Merz M, Komljenovic D, Zwick S, Semmler W. Drug-induced vessel remodeling in bone metastases as assessed by dynamic contrast enhanced magnetic resonance imaging and vessel size imaging: a longitudinal in vivo study. Clin Cancer Res. 2010;16(12):3215–25.CrossRefPubMedGoogle Scholar
  12. 12.
    Lecouvet FE, Larbi A, Pasoglou V, Omoumi P, Tombal B, Michoux N, et al. MRI for response assessment in metastatic bone disease. Eur Radiol. 2013;23(7):1986–97.CrossRefPubMedGoogle Scholar
  13. 13.
    Chu S, Karimi S, Peck KK, Yamada Y, Lis E, Lyo J, et al. Measurement of blood perfusion in spinal metastases with dynamic contrast-enhanced magnetic resonance imaging: evaluation of tumor response to radiation therapy. Spine (Phila Pa 1976). 2013;38(22):E1418–24.CrossRefGoogle Scholar
  14. 14.
    Rose PS, Buchowski JM. Metastatic disease in the thoracic and lumbar spine: evaluation and management. J Am Acad Orthop Surg. 2011;19(1):37–48.CrossRefPubMedGoogle Scholar
  15. 15.
    Mukherjee S, Thakur B, Bhagawati D, Bhagawati D, Akmal S, Arzoglou V, et al. Utility of routine biopsy at vertebroplasty in the management of vertebral compression fractures: a tertiary center experience. J Neurosurg Spine. 2014;21(5):687–97.CrossRefPubMedGoogle Scholar
  16. 16.
    Lis E, Bilsky MH, Pisinski L, Boland P, Healey JH, O’Malley B, et al. Percutaneous CT-guided biopsy of osseous lesion of the spine in patients with known or suspected malignancy. Am J Neuroradiol. 2004;25(9):1583–8.PubMedGoogle Scholar
  17. 17.
    Singh VM, Salunga RC, Huang VJ, Tran Y, Erlander M, Plumlee P, et al. Analysis of the effect of various decalcification agents on the quantity and quality of nucleic acid (DNA and RNA) recovered from bone biopsies. Ann Diagn Pathol. 2013;17(4):322–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Klimo P Jr, Schmidt MH. Surgical management of spinal metastases. Oncologist. 2004;9(2):188–96.CrossRefPubMedGoogle Scholar
  19. 19.
    Goldie JH, Coldman AJ. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep. 1979;63(11–12):1727–33.PubMedGoogle Scholar
  20. 20.
    Foo J, Michor F. Evolution of acquired resistance to anti-cancer therapy. J Theor Biol. 2014;355:10–20.CrossRefPubMedGoogle Scholar
  21. 21.
    Gerlinger M, Swanton C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer. 2010;103(8):1139–43.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dexter DL, Leith JT. Tumor heterogeneity and drug resistance. J Clin Oncol. 1986;4(2):244–57.CrossRefPubMedGoogle Scholar
  23. 23.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRefGoogle Scholar
  24. 24.
    Mumenthaler SM, Foo J, Choi NC, Heise N, Leder K, Agus DB, et al. The impact of microenvironmental heterogeneity on the evolution of drug resistance in cancer cells. Cancer Inform. 2015;14(Suppl 4):19–31.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Rossi S, Basso M, Strippoli A, Dadduzio V, Cerchiaro E, Barile R, et al. Hormone receptor status and HER2 expression in primary breast cancer compared with synchronous axillary metastases or recurrent metastatic disease. Clin Breast Cancer. 2015;15(5):307–12.CrossRefPubMedGoogle Scholar
  26. 26.
    Martin-Liberal J, Ochoa de Olza M, Hierro C, Gros A, Rodon J, Tabernero J. The expanding role of immunotherapy. Cancer Treat Rev. 2017;54:74–86.CrossRefPubMedGoogle Scholar
  27. 27.
    Barrios C, Forbes JF, Jonat W, Conte P, Gradishar W, Buzdar A, et al. The sequential use of endocrine treatment for advanced breast cancer: where are we? Ann Oncol. 2012;23(6):1378–86.CrossRefPubMedGoogle Scholar
  28. 28.
    National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines(R)): breast cancer. Version 2.2016 (5/6/2016). Fort Washington: National Comprehensive Cancer Network; 2016. Scholar
  29. 29.
    Taghian A, El-Ghamry MN, Merajver SD. Overview of the treatment of newly diagnosed, non-metastatic breast cancer. UpToDate. New York: Wolters Kluwer; 10 Aug 2016. Accessed 5 Apr 2017.
  30. 30.
    Kim SR, Paik S. Genomics of adjuvant therapy for breast cancer. Cancer J. 2011;17(6):500–4.CrossRefPubMedGoogle Scholar
  31. 31.
    Bhargava R, Beriwal S, Dabbs DJ, Ozbek U, Soran A, Johnson RR, et al. Immunohistochemical surrogate markers of breast cancer molecular classes predicts response to neoadjuvant chemotherapy: a single institutional experience with 359 cases. Cancer. 2010;116(6):1431–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13(8):2329–34.CrossRefPubMedGoogle Scholar
  33. 33.
    van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999–2009.CrossRefPubMedGoogle Scholar
  34. 34.
    Gupta A, Mutebi M, Bardia A. Gene-expression-based predictors for breast cancer. Ann Surg Oncol. 2015;22(11):3418–32.CrossRefPubMedGoogle Scholar
  35. 35.
    Patsialou A, Wang Y, Lin J, Whitney K, Goswami S, Kenny PA, et al. Selective gene-expression profiling of migratory tumor cells in vivo predicts clinical outcome in breast cancer patients. Breast Cancer Res. 2012;14(5):R139.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kriege M, Seynaeve C, Meijers-Heijboer H, Collee JM, Menke-Pluymers MB, Bartels CC, et al. Sensitivity to first-line chemotherapy for metastatic breast cancer in BRCA1 and BRCA2 mutation carriers. J Clin Oncol. 2009;27(23):3764–71.CrossRefPubMedGoogle Scholar
  37. 37.
    Kriege M, Jager A, Hooning MJ, Huijskens E, Blom J, van Deurzen CH, et al. The efficacy of taxane chemotherapy for metastatic breast cancer in BRCA1 and BRCA2 mutation carriers. Cancer. 2012;118(4):899–907.CrossRefPubMedGoogle Scholar
  38. 38.
    Smith KL, Isaacs C. BRCA mutation testing in determining breast cancer therapy. Cancer J. 2011;17(6):492–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bayraktar S, Gluck S. Systemic therapy options in BRCA mutation-associated breast cancer. Breast Cancer Res Treat. 2012;135(2):355–66.CrossRefPubMedGoogle Scholar
  40. 40.
    Pfeifer W, Sokolenko AP, Potapova ON, Bessonov AA, Ivantsov AO, Laptiev SA, et al. Breast cancer sensitivity to neoadjuvant therapy in BRCA1 and CHEK2 mutation carriers and non-carriers. Breast Cancer Res Treat. 2014;148(3):675–83.CrossRefPubMedGoogle Scholar
  41. 41.
    Sholl LM. The molecular pathology of lung cancer. Surg Pathol Clin. 2016;9(3):353–78.CrossRefPubMedGoogle Scholar
  42. 42.
    Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500.CrossRefPubMedGoogle Scholar
  43. 43.
    Korpanty GJ, Graham DM, Vincent MD, Leighl NB. Biomarkers that currently affect clinical practice in lung cancer: EGFR, ALK, MET, ROS-1, and KRAS. Front Oncol. 2014;4:204.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Greenhalgh J, Dwan K, Boland A, Bates V, Vecchio F, Dundar Y, et al. First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer. Cochrane Database Syst Rev. 2016;(5):CD010383.Google Scholar
  45. 45.
    Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K, Mekhail T, et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371(23):2167–77.CrossRefPubMedGoogle Scholar
  46. 46.
    National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines(R)): prostate cancer. Version 2.2017 (02/21/17). Fort Washington: National Comprehensive Cancer Network; 2017. Accessed 20 Mar 2017.Google Scholar
  47. 47.
    Dorff TB, Crawford ED. Management and challenges of corticosteroid therapy in men with metastatic castrate-resistant prostate cancer. Ann Oncol. 2013;24(1):31–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Hellerstedt BA, Pienta KJ. The current state of hormonal therapy for prostate cancer. CA Cancer J Clin. 2002;52(3):154–79.CrossRefPubMedGoogle Scholar
  49. 49.
    Hurwitz ME, Sokhn J, Petrylak DP. Cancer immunotherapy: new applications in urologic oncology. Curr Opin Urol. 2016;26(6):535–42.CrossRefPubMedGoogle Scholar
  50. 50.
    Motzer RJ, Hutson TE, Cella D, Reeves J, Hawkins R, Guo J, et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med. 2013;369(8):722–31.CrossRefPubMedGoogle Scholar
  51. 51.
    McDermott DF, Cheng SC, Signoretti S, Margolin KA, Clark JI, Sosman JA, et al. The high-dose aldesleukin “select” trial: a trial to prospectively validate predictive models of response to treatment in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2015;21(3):561–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Messina C, Christie D, Zucca E, Gospodarowicz M, Ferreri AJ. Primary and secondary bone lymphomas. Cancer Treat Rev. 2015;41(3):235–46.CrossRefPubMedGoogle Scholar
  54. 54.
    National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines (R)): B-cell lymphomas. Version 2.2017 (02/21/17). Fort Washington: National Comprehensive Cancer Network; 2017. Accessed 20 Mar 2017.Google Scholar
  55. 55.
    Pellegrini C, Gandolfi L, Quirini F, Ruggieri P, Stefoni V, Derenzini E, et al. Primary bone lymphoma: evaluation of chemoimmunotherapy as front-line treatment in 21 patients. Clin Lymphoma Myeloma Leuk. 2011;11(4):321–5.CrossRefPubMedGoogle Scholar
  56. 56.
    McDonald AC, Nicoll JA, Rampling RP. Non-Hodgkin’s lymphoma presenting with spinal cord compression; a clinicopathological review of 25 cases. Eur J Cancer. 2000;36(2):207–13.CrossRefPubMedGoogle Scholar
  57. 57.
    National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines(R)): multiple myeloma. Version 3.2017 (11/28/16). Fort Washington: National Comprehensive Cancer Network; 2017. Accessed 20 Mar 2017.Google Scholar
  58. 58.
    Ooi MG, de Mel S, Chng WJ. Risk stratification in multiple myeloma. Curr Hematol Malig Rep. 2016;11(2):137–47.CrossRefPubMedGoogle Scholar
  59. 59.
    Gertz MA, Lacy MQ, Dispenzieri A, Greipp PR, Litzow MR, Henderson KJ, et al. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood. 2005;106(8):2837–40.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kapoor P, Kumar S, Fonseca R, Lacy MQ, Witzig TE, Hayman SR, et al. Impact of risk stratification on outcome among patients with multiple myeloma receiving initial therapy with lenalidomide and dexamethasone. Blood. 2009;114(3):518–21.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Durie BG, Jacobson J, Barlogie B, Crowley J. Magnitude of response with myeloma frontline therapy does not predict outcome: importance of time to progression in southwest oncology group chemotherapy trials. J Clin Oncol. 2004;22(10):1857–63.CrossRefPubMedGoogle Scholar
  62. 62.
    Schwab JH, Boland P, Guo T, Brennan MF, Singer S, Healey JH, et al. Skeletal metastases in myxoid liposarcoma: an unusual pattern of distant spread. Ann Surg Oncol. 2007;14(4):1507–14.CrossRefPubMedGoogle Scholar
  63. 63.
    Moreau LC, Turcotte R, Ferguson P, Wunder J, Clarkson P, Masri B, et al. Myxoid\round cell liposarcoma (MRCLS) revisited: an analysis of 418 primarily managed cases. Ann Surg Oncol. 2012;19(4):1081–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Schwab JH, Boland PJ, Antonescu C, Bilsky MH, Healey JH. Spinal metastases from myxoid liposarcoma warrant screening with magnetic resonance imaging. Cancer. 2007;110(8):1815–22.CrossRefPubMedGoogle Scholar
  65. 65.
    Kato S, Kawahara N, Murakami H, Demura S, Shirai T, Tsuchiya H, et al. Multi-level total en bloc spondylectomy for solitary lumbar metastasis of myxoid liposarcoma. Orthopedics. 2010;33(6):446.PubMedGoogle Scholar
  66. 66.
    Jones RL, Fisher C, Al-Muderis O, Judson IR. Differential sensitivity of liposarcoma subtypes to chemotherapy. Eur J Cancer. 2005;41(18):2853–60.CrossRefPubMedGoogle Scholar
  67. 67.
    Kawai A, Araki N, Sugiura H, Ueda T, Yonemoto T, Takahashi M, et al. Trabectedin monotherapy after standard chemotherapy versus best supportive care in patients with advanced, translocation-related sarcoma: a randomised, open-label, phase 2 study. Lancet Oncol. 2015;16(4):406–16.CrossRefPubMedGoogle Scholar
  68. 68.
    Eastell R, Hannon RA, Cuzick J, Dowsett M, Clack G, Adams JE, et al. Effect of an aromatase inhibitor on bmd and bone turnover markers: 2-year results of the Anastrozole, Tamoxifen, Alone or in Combination (ATAC) trial (18233230). J Bone Miner Res. 2006;21(8):1215–23.CrossRefPubMedGoogle Scholar
  69. 69.
    Maillefert JF, Sibilia J, Michel F, Saussine C, Javier RM, Tavernier C. Bone mineral density in men treated with synthetic gonadotropin-releasing hormone agonists for prostatic carcinoma. J Urol. 1999;161(4):1219–22.CrossRefPubMedGoogle Scholar
  70. 70.
    Lee WY, Cho SW, Oh ES, Oh KW, Lee JM, Yoon KH, et al. The effect of bone marrow transplantation on the osteoblastic differentiation of human bone marrow stromal cells. J Clin Endocrinol Metab. 2002;87(1):329–35.CrossRefPubMedGoogle Scholar
  71. 71.
    Shapiro CL, Manola J, Leboff M. Ovarian failure after adjuvant chemotherapy is associated with rapid bone loss in women with early-stage breast cancer. J Clin Oncol. 2001;19(14):3306–11.CrossRefPubMedGoogle Scholar
  72. 72.
    Gnant M, Mlineritsch B, Luschin-Ebengreuth G, Kainberger F, Kassmann H, Piswanger-Solkner JC, et al. Adjuvant endocrine therapy plus zoledronic acid in premenopausal women with early-stage breast cancer: 5-year follow-up of the ABCSG-12 bone-mineral density substudy. Lancet Oncol. 2008;9(9):840–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Gralow JR, Biermann JS, Farooki A, Fornier MN, Gagel RF, Kumar R, et al. NCCN Task Force Report: bone health in cancer care. J Natl Compr Canc Netw. 2013;11(Suppl 3):S1–50; quiz S1.CrossRefPubMedGoogle Scholar
  74. 74.
    Kanis JA. Determinants of skeletal mass and strength [chapter 4]; causes of osteoporosis [chapter 5]. In: Kanis JA, editor. Textbook of osteoporosis. Oxford and Cambridge: Blackwell Science; 1996. p. 106–99.Google Scholar
  75. 75.
    Vehmanen L, Elomaa I, Blomqvist C, Saarto T. Tamoxifen treatment after adjuvant chemotherapy has opposite effects on bone mineral density in premenopausal patients depending on menstrual status. J Clin Oncol. 2006;24(4):675–80.CrossRefPubMedGoogle Scholar
  76. 76.
    Prolia(R) (denosumab) Injection [package insert]. Thousand Oaks: Amgen Inc.; 2011.
  77. 77.
    Ellis GK, Bone HG, Chlebowski R, Paul D, Spadafora S, Smith J, et al. Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol. 2008;26(30):4875–82.CrossRefPubMedGoogle Scholar
  78. 78.
    Van Poznak C, Hannon RA, Mackey JR, Campone M, Apffelstaedt JP, Clack G, et al. Prevention of aromatase inhibitor-induced bone loss using risedronate: the SABRE trial. J Clin Oncol. 2010;28(6):967–75.CrossRefPubMedGoogle Scholar
  79. 79.
    Canalis E, Giustina A, Bilezikian JP. Mechanisms of anabolic therapies for osteoporosis. N Engl J Med. 2007;357(9):905–16.CrossRefPubMedGoogle Scholar
  80. 80.
    Wong MH, Stockler MR, Pavlakis N. Bisphosphonates and other bone agents for breast cancer. Cochrane Database Syst Rev. 2012;(2):CD003474.Google Scholar
  81. 81.
    Lipton A. Efficacy and safety of intravenous bisphosphonates in patients with bone metastases caused by metastatic breast cancer. Clin Breast Cancer. 2007;7(Suppl 1):S14–20.CrossRefPubMedGoogle Scholar
  82. 82.
    ZOMETA(R) (zoledronic acid) Injection [package insert]. East Hanover: Novartis Pharmaceuticals Corporation; 2014.
  83. 83.
    XGEVA(R) (denosumab) Injection [package insert]. Thousand Oaks: Amgen Inc.; 2013.
  84. 84.
    Fizazi K, Carducci M, Smith M, Damiao R, Brown J, Karsh L, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377(9768):813–22.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Martin M, Bell R, Bourgeois H, Brufsky A, Diel I, Eniu A, et al. Bone-related complications and quality of life in advanced breast cancer: results from a randomized phase III trial of denosumab versus zoledronic acid. Clin Cancer Res. 2012;18(17):4841–9.CrossRefPubMedGoogle Scholar
  86. 86.
    Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29(9):1125–32.CrossRefPubMedGoogle Scholar
  87. 87.
    Ben-Aharon I, Vidal L, Rizel S, Yerushalmi R, Shpilberg O, Sulkes A, et al. Bisphosphonates in the adjuvant setting of breast cancer therapy—effect on survival: a systematic review and meta-analysis. PLoS One. 2013;8(8):e70044.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of SurgeryMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations