Laser/Light Applications in Neurology and Neurosurgery

  • Roberto Diaz
  • Ricardo J. Komotar
  • Michael E. IvanEmail author


Applications of light in neurology and neurosurgery can be diagnostic or therapeutic. Neurophotonics is the science of photon interaction with neural tissue. Photodynamic therapy (PDT) has been attempted to destroy infiltrative tumor cells in tissue. Spatially modulated imaging (MI) is a newly described non-contact optical technique in the spatial domain. With this technique, both quantitative mapping of tissue optical properties within a single measurement and cross sectional optical tomography can be achieved rapidly. The ability to control the activity of a defined class of neurons has the potential to advance clinical neuromodulation.


LITT Laser interstitial thermal therapy Optical Coherence Tomography Fluorescence assisted surgery Raman spectroscopy CO2 laser 


  1. 1.
    Al-Juboori SI, et al. Light scattering properties vary across different regions of the adult mouse brain. PLoS One. 2013;8(7):e67626.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yaroslavsky AN, et al. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med Biol. 2002;47(12):2059–73.CrossRefPubMedGoogle Scholar
  3. 3.
    Pascu A, et al. Laser-induced autofluorescence measurements on brain tissues. Anat Rec (Hoboken). 2009;292(12):2013–22.CrossRefGoogle Scholar
  4. 4.
    Stepnoski RA, et al. Noninvasive detection of changes in membrane potential in cultured neurons by light scattering. Proc Natl Acad Sci U S A. 1991;88(21):9382–6.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nuriya M, Yasui M. Membrane potential dynamics of axons in cultured hippocampal neurons probed by second-harmonic-generation imaging. J Biomed Opt. 2010;15(2):020503.CrossRefPubMedGoogle Scholar
  6. 6.
    Nishidate I, et al. In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression. J Biomed Opt. 2015;20(2):27003.CrossRefPubMedGoogle Scholar
  7. 7.
    Bentley JN, et al. Real-time image guidance for brain tumor surgery through stimulated Raman scattering microscopy. Expert Rev Anticancer Ther. 2014;14(4):359–61.CrossRefPubMedGoogle Scholar
  8. 8.
    Gratton G, et al. Seeing right through you: applications of optical imaging to the study of the human brain. Psychophysiology. 2003;40(4):487–91.CrossRefPubMedGoogle Scholar
  9. 9.
    Jafri MS, et al. Optical coherence tomography in the diagnosis and treatment of neurological disorders. J Biomed Opt. 2005;10(5):051603.CrossRefPubMedGoogle Scholar
  10. 10.
    Assayag O, et al. Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography. Neuroimage Clin. 2013;2:549–57.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Thorell WE, et al. Optical coherence tomography: a new method to assess aneurysm healing. J Neurosurg. 2005;102(2):348–54.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    McLone DG, Naidich TP. Laser resection of fifty spinal lipomas. Neurosurgery. 1986;18(5):611–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Desai SK, et al. The role of flexible hollow core carbon dioxide lasers in resection of lumbar intraspinal lipomas. Childs Nerv Syst. 2012;28(10):1785–90.CrossRefPubMedGoogle Scholar
  14. 14.
    Browd SR, et al. A new fiber-mediated carbon dioxide laser facilitates pediatric spinal cord detethering. Technical note. J Neurosurg Pediatr. 2009;4(3):280–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Yahr WZ, Strully KJ, Hurwitt ES. Non-occlusive small arterial anastomosis with a neodymium laser. Surg Forum. 1964;15:224–6.PubMedGoogle Scholar
  16. 16.
    Shapiro S, et al. Microvascular end-to-side arterial anastomosis using the Nd: YAG laser. Neurosurgery. 1989;25(4):584–8. discussion 588-9CrossRefPubMedGoogle Scholar
  17. 17.
    Quigley MR, et al. Aneurysm formation after low power carbon dioxide laser-assisted vascular anastomosis. Neurosurgery. 1986;18(3):292–9.CrossRefPubMedGoogle Scholar
  18. 18.
    van Doormaal TP, et al. Treatment of giant and large internal carotid artery aneurysms with a high-flow replacement bypass using the excimer laser-assisted nonocclusive anastomosis technique. Neurosurgery. 2008;62(6 Suppl 3):1411–8.PubMedGoogle Scholar
  19. 19.
    van Doormaal TP, et al. Treatment of giant middle cerebral artery aneurysms with a flow replacement bypass using the excimer laser-assisted nonocclusive anastomosis technique. Neurosurgery. 2008;63(1):12–20. discussion 20-2CrossRefPubMedGoogle Scholar
  20. 20.
    Vajkoczy P, et al. Experience in using the excimer laser-assisted nonocclusive anastomosis nonocclusive bypass technique for high-flow revascularization: Mannheim-Helsinki series of 64 patients. Neurosurgery. 2012;70(1):49–54. discussion 54-5CrossRefPubMedGoogle Scholar
  21. 21.
    Takizawa T, et al. Laser surgery of basal, orbital and ventricular meningiomas which are difficult to extirpate by conventional methods. Neurol Med Chir (Tokyo). 1980;20(7):729–37.CrossRefGoogle Scholar
  22. 22.
    Deruty R, et al. Routine use of the CO2 laser technique for resection of cerebral tumours. Acta Neurochir. 1993;123(1–2):43–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Roux FX, et al. Combined CO2 and Nd-YAG laser in neurosurgical practice. A 1st experience apropos of 40 intracranial procedures. Neurochirurgie. 1992;38(4):235–7.PubMedGoogle Scholar
  24. 24.
    Lombard GF, Luparello V, Peretta P. Statistical comparison of surgical results with or without laser in neurosurgery. Neurochirurgie. 1992;38(4):226–8.PubMedGoogle Scholar
  25. 25.
    Desgeorges M, et al. Laser microsurgery of meningioma. An analysis of a consecutive series of 164 cases treated surgically by using different lasers. Neurochirurgie. 1992;38(4):217–25.PubMedGoogle Scholar
  26. 26.
    Waidhauser E, Beck OJ, Oeckler RC. Nd:YAG-laser in the microsurgery of frontobasal meningiomas. Lasers Surg Med. 1990;10(6):544–50.CrossRefPubMedGoogle Scholar
  27. 27.
    Passacantilli E, et al. Neurosurgical applications of the 2-mum thulium laser: histological evaluation of meningiomas in comparison to bipolar forceps and an ultrasonic aspirator. Photomed Laser Surg. 2012;30(5):286–92.CrossRefPubMedGoogle Scholar
  28. 28.
    Passacantilli E, et al. Assessment of the utility of the 2-micro thulium laser in surgical removal of intracranial meningiomas. Lasers Surg Med. 2013;45(3):148–54.CrossRefPubMedGoogle Scholar
  29. 29.
    Scheich M, et al. Use of flexible CO(2) laser fiber in microsurgery for vestibular schwannoma via the middle cranial fossa approach. Eur Arch Otorhinolaryngol. 2012;269(5):1417–23.CrossRefPubMedGoogle Scholar
  30. 30.
    Eiras J, Alberdi J, Gomez J. Laser CO2 in the surgery of acoustic neuroma. Neurochirurgie. 1993;39(1):16–21. discussion 21-3PubMedGoogle Scholar
  31. 31.
    Stummer W, et al. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery. 2008;62(3):564–76. discussion 564-76CrossRefPubMedGoogle Scholar
  32. 32.
    Kuhnt D, et al. Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro-Oncology. 2011;13(12):1339–48.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sanai N, et al. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115(1):3–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Pichlmeier U, et al. Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients. Neuro-Oncology. 2008;10(6):1025–34.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    McGirt MJ, et al. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg. 2009;110(1):156–62.CrossRefPubMedGoogle Scholar
  36. 36.
    Stummer W, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392–401.CrossRefPubMedGoogle Scholar
  37. 37.
    Rey-Dios R, Cohen-Gadol AA. Technical principles and neurosurgical applications of fluorescein fluorescence using a microscope-integrated fluorescence module. Acta Neurochir. 2013;155(4):701–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Tonn JC, Stummer W. Fluorescence-guided resection of malignant gliomas using 5-aminolevulinic acid: practical use, risks, and pitfalls. Clin Neurosurg. 2008;55:20–6.PubMedGoogle Scholar
  39. 39.
    Stummer W, et al. In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid. J Photochem Photobiol B. 1998;45(2–3):160–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Obwegeser A, Jakober R, Kostron H. Uptake and kinetics of 14C-labelled meta-tetrahydroxyphenylchlorin and 5-aminolaevulinic acid in the C6 rat glioma model. Br J Cancer. 1998;78(6):733–8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    O'Goshi K, Serup J. Safety of sodium fluorescein for in vivo study of skin. Skin Res Technol. 2006;12(3):155–61.CrossRefPubMedGoogle Scholar
  42. 42.
    Moore GE. Fluorescein as an agent in the differentiation of normal and malignant tissues. Science. 1947;106(2745):130–1.CrossRefPubMedGoogle Scholar
  43. 43.
    Moore GE, Peyton WT, et al. The clinical use of fluorescein in neurosurgery; the localization of brain tumors. J Neurosurg. 1948;5(4):392–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Kuroiwa T, Kajimoto Y, Ohta T. Development of a fluorescein operative microscope for use during malignant glioma surgery: a technical note and preliminary report. Surg Neurol. 1998;50(1):41–8. discussion 48-9CrossRefPubMedGoogle Scholar
  45. 45.
    Schebesch KM, et al. Sodium fluorescein-guided resection under the YELLOW 560 nm surgical microscope filter in malignant brain tumor surgery—a feasibility study. Acta Neurochir. 2013;155(4):693–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Diaz RJ, et al. Study of the biodistribution of fluorescein in glioma-infiltrated mouse brain and histopathological correlation of intraoperative findings in high-grade gliomas resected under fluorescein fluorescence guidance. J Neurosurg. 2015;122(6):1360–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Shinoda J, et al. Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium. Technical note. J Neurosurg. 2003;99(3):597–603.CrossRefPubMedGoogle Scholar
  48. 48.
    Koc K, et al. Fluorescein sodium-guided surgery in glioblastoma multiforme: a prospective evaluation. Br J Neurosurg. 2008;22(1):99–103.CrossRefPubMedGoogle Scholar
  49. 49.
    Chen B, et al. Gross total resection of glioma with the intraoperative fluorescence-guidance of fluorescein sodium. Int J Med Sci. 2012;9(8):708–14.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Larson TR, Bostwick DG, Corica A. Temperature-correlated histopathologic changes following microwave thermoablation of obstructive tissue in patients with benign prostatic hyperplasia. Urology. 1996;47(4):463–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Medvid R, et al. Current applications of MRI-guided laser interstitial thermal therapy in the treatment of brain neoplasms and epilepsy: a radiologic and neurosurgical overview. AJNR Am J Neuroradiol. 2015;36(11):1998–2006.CrossRefPubMedGoogle Scholar
  52. 52.
    Carpentier A, Chauvet D, Reina V, Beccaria K, Leclerq D, RJ MN, Gowda A, Cornu P, Delattre JY. MR-guided laser-induced thermal therapy (LITT) for recurrent glioblastomas. Lasers Surg Med. 2012;44(5):361–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Mohammadi A, Hawasli AH, Rodriguez A, Schroeder JL, Laxton AW, Elson P, Tatter SB, Barnett GH, Leuthardt EC. The role of laser interstitial thermal therapy in enhancing progression-free survival of difficult-to-access high-grade gliomas: a multicenter study. Cancer Med. 2014;3(4):971–9. Scholar
  54. 54.
    Schwarzmaier H, Eickmeyer F, von Tempelhoff W, Fiedler VU, Niehoff H, Ulrich SD, Ulrich F. MR-guided laser irradiation of recurrent glioblastomas. J Magn Reson Imaging. 2005;22:799–803.CrossRefPubMedGoogle Scholar
  55. 55.
    Schwarzmaier H, Eickmeyer F, von Tempelhoff W, Fiedler VU, Niehoff H, Ulrich SD, Yang Q, Ulrich F. MR-guided laser-induced interstitial thermotherapy of recurrent glioblastoma multiforme: Preliminary results in 16 patients. Eur J Radiol. 2006;59:208–15.CrossRefPubMedGoogle Scholar
  56. 56.
    Sloan A, Ahluwalia MS, Valerio-Pascua J, Manjila S, Torchia MG, Jones SE, Sunshine JL, Phillips M, Griswold MA, Clampitt M, Brewer C, Jochum J, MV MG, Diorio D, Ditz G, Barnett GH. Results of the neuroblate system first-in-humans phase I clinical trial for recurrent glioblastoma: clinical article. J Neurosurg. 2013;118(6):1202–19.CrossRefPubMedGoogle Scholar
  57. 57.
    Jethwa P, Barrese JC, Gowda A, Shetty A, Danish SF. Magnetic resonance thermometry guided laser-induced thermal therapy for intracranial neoplasms: initial experience. Neurosurgery. 2012;71:133–5.CrossRefPubMedGoogle Scholar
  58. 58.
    Carpentier A, RJ MN, Stafford RJ, Guichard JP, Reizine D, Delaloge S, Vicaut E, Payen D, Gowda A, George B. Laser thermal therapy: real-time MRI-guided and computer-controlled procedures for metastatic brain tumors. Lasers Surg Med. 2011 Dec.;43(10):943–50.CrossRefPubMedGoogle Scholar
  59. 59.
    Rao M, Hargreaves EL, Khan AJ, Haffty BG, Danish SF. Magnetic resonance-guided laser ablation improves local control for postradiosurgery recurrence and/or radiation necrosis. Neurosurgery. 2014;74(6):658–67.CrossRefPubMedGoogle Scholar
  60. 60.
    Carpentier A, et al. Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery. 2008;63(1 Suppl 1):ONS21–8. discussion ONS28–9PubMedGoogle Scholar
  61. 61.
    Archavlis E, et al. Survival analysis of HDR brachytherapy versus reoperation versus temozolomide alone: a retrospective cohort analysis of recurrent glioblastoma multiforme. BMJ Open. 2013;3(3):pii: e002262.CrossRefGoogle Scholar
  62. 62.
    Mohammadi AM, et al. The role of laser interstitial thermal therapy in enhancing progression-free survival of difficult-to-access high-grade gliomas: a multicenter study. Cancer Med. 2014;3(4):971–9.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Vojtech Z, et al. MRI-guided stereotactic amygdalohippocampectomy: a single center experience. Neuropsychiatr Dis Treat. 2015;11:359–74.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Waseem H, et al. Laser ablation therapy: An alternative treatment for medically resistant mesial temporal lobe epilepsy after age 50. Epilepsy Behav. 2015;51:152–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Drane DL, et al. Better object recognition and naming outcome with MRI-guided stereotactic laser amygdalohippocampotomy for temporal lobe epilepsy. Epilepsia. 2015;56(1):101–13.CrossRefPubMedGoogle Scholar
  66. 66.
    Tetard MC, et al. Interstitial 5-ALA photodynamic therapy and glioblastoma: preclinical model development and preliminary results. Photodiagnosis Photodyn Ther. 2016;13:218–24.CrossRefPubMedGoogle Scholar
  67. 67.
    Stummer W, et al. Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report. J Neuro-Oncol. 2008;87(1):103–9.CrossRefGoogle Scholar
  68. 68.
    Miki Y, et al. Photodynamic therapy using talaporfin sodium induces concentration-dependent programmed necroptosis in human glioblastoma T98G cells. Lasers Med Sci. 2015;30(6):1739–45.CrossRefPubMedGoogle Scholar
  69. 69.
    Wang S, et al. Talaporfin sodium. Expert Opin Pharmacother. 2010;11(1):133–40.CrossRefPubMedGoogle Scholar
  70. 70.
    Bechet D, et al. Multifunctional ultrasmall nanoplatforms for vascular-targeted interstitial photodynamic therapy of brain tumors guided by real-time MRI. Nanomedicine. 2015;11(3):657–70.CrossRefPubMedGoogle Scholar
  71. 71.
    Benachour H, et al. Multifunctional peptide-conjugated hybrid silica nanoparticles for photodynamic therapy and MRI. Theranostics. 2012;2(9):889–904.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ji M, et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci Transl Med. 2013;5(201):201ra119.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Jermyn M, et al. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med. 2015;7(274):274ra19.CrossRefPubMedGoogle Scholar
  74. 74.
    Wang PH, et al. Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model. J Biomed Opt. 2012;17(6):061222.CrossRefPubMedGoogle Scholar
  75. 75.
    Gutrath BS, et al. Size-dependent multispectral photoacoustic response of solid and hollow gold nanoparticles. Nanotechnology. 2012;23(22):225707.CrossRefPubMedGoogle Scholar
  76. 76.
    Qian XM, Nie SM. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev. 2008;37(5):912–20.CrossRefPubMedGoogle Scholar
  77. 77.
    Kneipp J, Kneipp H, Kneipp K. SERS—a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev. 2008;37(5):1052–60.CrossRefPubMedGoogle Scholar
  78. 78.
    Kircher MF, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med. 2012;18(5):829–34.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Kim BY, Rutka JT, Chan WC. Nanomedicine. N Engl J Med. 2010;363(25):2434–43.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Roberto Diaz
    • 1
  • Ricardo J. Komotar
    • 1
    • 2
    • 3
  • Michael E. Ivan
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of NeurosurgeryUniversity of MiamiMiamiUSA
  2. 2.Sylvester Comprehensive Cancer CenterMiamiUSA
  3. 3.UM Brain Tumor InitiativeMiamiUSA

Personalised recommendations