Advertisement

Laser/Light Applications in Ophthalmology: Visual Refraction

  • Amit Todani
  • Mahnaz Nouri
  • Roberto Pineda
Chapter

Abstract

  • Refractive laser technology is used for correction of myopia, hyperopia and astigmatism.

  • Laser vision correction can be performed on the surface the cornea after removing the epithelium or deeper into stroma under a hinged corneal flap.

  • Proper candidate selection is essential to minimize the risk of complications.

  • Corneal collagen cross-linking with ultraviolet light and riboflavin (a photo sensitizer) is a relatively new treatment modality for a variety of corneal keratectatic disorders.

  • Femtosecond laser technology has recently evolved into a tool for cataract surgery.

Keywords

LASER LASIK LASEK epi-LASIK PRK PTK Ophthalmology Visual science Refraction Refractive surgery Femtosecond laser Excimer laser 

Notes

Acknowledgment

The authors would like to thank Advanced Medical Optics, Inc. (AMO, USA) and Alcon Laboratories, Inc. (Alcon, USA) for providing the color photographs used in this chapter.

References

  1. 1.
    Maiman TH. Stimulated optical radiation in ruby. Nature. 1960;187:493–4.CrossRefGoogle Scholar
  2. 2.
    Trokel SL, Srinivasan R, Braren B. Excimer laser surgery of the cornea. Am J Ophthalmol. 1983;96(6):710–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Cotliar AM, Schubert HD, Mandel ER, Trokel SL. Excimer laser radial keratotomy. Ophthalmology. 1985;92(2):206–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Rosa DS, Boerner CF, Gross M, Timsit JC, Delacour M, Bath PE. Wound healing following excimer laser radial keratotomy. J Cataract Refract Surg. 1988;14(2):173–9.CrossRefPubMedGoogle Scholar
  5. 5.
    McDonald MB, Kaufman HE, Frantz JM, Shofner S, Salmeron B, Klyce SD. Excimer laser ablation in a human eye. Case report. Arch Ophthalmol. 1989;107(5):641–2.CrossRefPubMedGoogle Scholar
  6. 6.
    Pallikaris IG, Papatzanaki ME, Stathi EZ, Frenschock O, Georgiadis A. Laser in situ keratomileusis. Lasers Surg Med. 1990;10(5):463–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Rama P, Chamon W, Genisi C, Azar DT. Excimer laser intrastromal keratomileusis (LASIK). In: Azar DT, editor. Refractive surgery. Stamford, CT: Appleton & Lange; 1997. p. 455–69.Google Scholar
  8. 8.
    Wissing S, Laube T, Theiss C, Steuhl KP, Meller D. Reduced keratocyte loss after laser epithelial keratomileusis (LASEK) in comparison to photorefractive keratectomy (PRK) in rabbits. Abstract # 4242. ARVO 2002.Google Scholar
  9. 9.
    Ambrósio R Jr, Wilson S. LASIK vs LASEK vs PRK: advantages and indications. Semin Ophthalmol. 2003;18(1):2–10.CrossRefPubMedGoogle Scholar
  10. 10.
    Domniz Y, Comaish IF, Lawless MA, Rogers CM, Sutton GL. Recutting the cornea versus lifting the flap: comparison of two enhancement techniques following laser in situ keratomileusis. J Refract Surg. 2001;17(5):505–10.PubMedGoogle Scholar
  11. 11.
    Yildirim R, Aras C, Ozdamar A, Bahcecioglu H, Ozkan S. Reproducibility of corneal flap thickness in laser in situ keratomileusis using the Hansatome microkeratome. J Cataract Refract Surg. 2000;26(12):1729–32.CrossRefPubMedGoogle Scholar
  12. 12.
    Seo KY, Wan XH, Jang JW, Lee JB, Kim MJ, Kim EK. Effect of microkeratome suction duration on corneal flap thickness and incision angle. J Refract Surg. 2002;18(6):715–9.PubMedGoogle Scholar
  13. 13.
    Pallikaris IG, Katsanevaki VJ, Kalyvianaki MI, Naoumidi II. Advances in subepithelial excimer refractive surgery techniques: Epi-LASIK. Curr Opin Ophthalmol 2003;14(4):207-212.Google Scholar
  14. 14.
    Pallikaris IG, Naoumidi II, Kalyvianaki MI, Katsanevaki VJ. Epi-LASIK: comparative histological evaluation of mechanical and alcohol-assisted epithelial separation. J Cataract Refract Surg. 2003;29(8):1496–501.CrossRefPubMedGoogle Scholar
  15. 15.
    Sugar A. Ultrafast (femtosecond) laser refractive surgery. Curr Opin Ophthalmol. 2002;13(4):246–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Barraquer JI. Modification of refraction by intracorneal inclusions. Archizos Sociadad Americas Oftalmologia y Optometria. 1963;4:229–62.Google Scholar
  17. 17.
    Yu J, Chen H, Wang F. Patient satisfaction and visual symptoms after wavefront-guided and wavefront-optimized LASIK with the WaveLight platform. J Refract Surg. 2008;24(5):477–86.PubMedGoogle Scholar
  18. 18.
    Martínez CE, Applegate RA, Klyce SD, MB MD, Medina JP, Howland HC. Effect of pupillary dilation on corneal optical aberrations after photorefractive keratectomy. Arch Ophthalmol. 1998;116(8):1053–62.CrossRefPubMedGoogle Scholar
  19. 19.
    Venter J. Wavefront-guided custom ablation for myopia using the NIDEK NAVEX laser system. J Refract Surg. 2008;24(5):487–93.PubMedGoogle Scholar
  20. 20.
    Kim TI, Yang SJ, Tchah H. Bilateral comparison of wavefront-guided versus conventional laser in situ keratomileusis with Bausch and Lomb Zyoptix. J Refract Surg. 2004;20(5):432–8.PubMedGoogle Scholar
  21. 21.
    Jabbur NS, Sakatani K, O’Brien TP. Survey of complications and recommendations for management in dissatisfied patients seeking a consultation after refractive surgery. J Cataract Refract Surg. 2004;30(9):1867–74.CrossRefPubMedGoogle Scholar
  22. 22.
    Gimbel HV, Penno EE, van Westenbrugge JA, et al. Incidence and management of intraoperative and early postoperative complications in 1000 consecutive laser in situ keratomileusis cases. Ophthalmology. 1998;105(10):1839–47.CrossRefPubMedGoogle Scholar
  23. 23.
    Lin RT, Maloney RK. Flap complications associated with lamellar refractive surgery. Am J Ophthalmol. 1999;127(2):129–36.CrossRefPubMedGoogle Scholar
  24. 24.
    Stulting RD, Carr JD, Thompson KP, Waring GO III, Wiley WM, Walker JG. Complications of laser in situ keratomileusis for the correction of myopia. Ophthalmology. 1999;106(1):13–20.CrossRefPubMedGoogle Scholar
  25. 25.
    Nakano K, Nakano E, Oliveira M, Portellinha W, Alvarenga L. Intraoperative microkeratome complications in 47,094 laser in situ keratomileusis surgeries. J Refract Surg. 2004;20(5 Suppl):S723–6.PubMedGoogle Scholar
  26. 26.
    Carrillo C, Chayet AS, Dougherty PJ, Montes M, Magallanes R, Najman J, Fleitman J, Morales A. Incidence of complications during flap creation in LASIK using the NIDEK MK-2000 microkeratome in 26,600 cases. J Refract Surg. 2005;21(5 Suppl):S655–7.PubMedGoogle Scholar
  27. 27.
    Wang MY, Maloney RK. Epithelial ingrowth after laser in situ keratomileusis. Am J Ophthalmol. 2000;129(6):746–51.CrossRefPubMedGoogle Scholar
  28. 28.
    Sun L, Liu G, Ren Y, Li J, Hao J, Liu X, Zhang Y. Efficacy and safety of LASIK in 10,052 eyes of 5081 myopic Chinese patients. J Refract Surg. 2005;21(5 Suppl):S633–5.PubMedGoogle Scholar
  29. 29.
    Wygledowska-Promieńska D, Rokita-Wala II, Katedry i. Kliniki Okulistyki Slaskiej Akademii Medycznej w Katowicach. [Epithelial ingrowth after LASIK--personal experience - Article in Polish]. Klin Oczna. 2003;105(3-4):157–61.PubMedGoogle Scholar
  30. 30.
    Rad AS, Jabbarvand M. Saifi N.J Progressive keratectasia after laser in situ keratomileusis. Refract Surg. 2004;20(5 Suppl):S718–22.Google Scholar
  31. 31.
    Nakano EM, Bains HS, Hirai FE, Portellinha W, Oliveira M, Nakano K. Comparison of laser epithelial keratomileusis with and without mitomycin C for wavefront customized surface ablations. J Refract Surg. 2007;23(9 Suppl):S1021–8.PubMedGoogle Scholar
  32. 32.
    Thornton I, Puri A, Xu M, Krueger RR. Low-dose mitomycin C as a prophylaxis for corneal haze in myopic surface ablation. Am J Ophthalmol. 2007;144(5):673–81.CrossRefPubMedGoogle Scholar
  33. 33.
    Melki SA, Azar DT. LASIK complications: etiology, management, and prevention. Surv Ophthalmol. 2001;46(2):95–116.CrossRefPubMedGoogle Scholar
  34. 34.
    Chayet AS, Assil KK, Montes M, Espinosa-Lagana M, Castellanos A, Tsioulias G. Regression and its mechanisms after laser in situ keratomileusis in moderate and high myopia. Ophthalmology. 1998;105(7):1194–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Bailey MD, Mitchell GL, Dhaliwal DK, Boxer Wachler BS, Zadnik K. Patient satisfaction and visual symptoms after laser in situ keratomileusis. Ophthalmology. 2003;110(7):1371–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Hovanesian JA, Shah SS, Maloney RK. Symptoms of dry eye and recurrent erosion syndrome after refractive surgery. J Cataract Refract Surg. 2001;27(4):577–84.CrossRefPubMedGoogle Scholar
  37. 37.
    Gil-Cazorla R, Teus MA, de Benito-Llopis L, Fuentes I. Incidence of diffuse lamellar keratitis after laser in situ keratomileusis associated with the IntraLase 15 kHz femtosecond laser and Moria M2 microkeratome. J Cataract Refract Surg. 2008;34(1):28–31.CrossRefPubMedGoogle Scholar
  38. 38.
    Raiskup-Wolf F, Hoyer A, Spoerl E, Pillunat LE. Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results. J Cataract Refract Surg. 2008;34(5):796–801.CrossRefPubMedGoogle Scholar
  39. 39.
    Kymionis GD, Bouzoukis DI, Diakonis VF, Portaliou DM, Pallikaris AI, Yoo SH. Diffuse lamellar keratitis after corneal crosslinking in a patient with post-laser in situ keratomileusis corneal ectasia. J Cataract Refract Surg. 2007;33(12):2135–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Iseli HP, Thiel MA, Hafezi F, Kampmeier J, Seiler T. Ultraviolet A/riboflavin corneal cross-linking for infectious keratitis associated with corneal melts. Cornea. 2008;27(5):590–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Schnitzler E, Spörl E, Seiler T. Irradiation of cornea with ultraviolet light and riboflavin administration as a new treatment for erosive corneal processes, preliminary results in four patients. Klin Monbl Augenheilkd. 2000;217(3):190–3.CrossRefPubMedGoogle Scholar
  42. 42.
    Spoerl E, Wollensak G, Seiler T. Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res. 2004;29(1):35–40.CrossRefPubMedGoogle Scholar
  43. 43.
    Kohlhaas M, Spoerl E, Speck A, Schilde T, Sandner D, Pillunat LE. Klin Monbl Augenheilkd. 2005;222(5):430–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Rana M, Lau A, Aralikatti A, Shah S. Severe microbial keratitis and associated perforation after corneal crosslinking for keratoconus. Cont Lens Anterior Eye. 2015;38(2):134–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Shetty R, Kaweri L, Nuijts RM, Nagaraja H, Arora V, Kumar RS. Profile of microbial keratitis after corneal collagen cross-linking. Biomed Res Int. 2014;2014:340509.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Raiskup F, Hoyer A, Spoerl E. Permanent corneal haze after riboflavin-UVA-induced cross-linking in keratoconus. J Refract Surg. 2009;25(9):S824–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Mazzotta C, Balestrazzi A, Baiocchi S, Traversi C, Caporossi A. Stromal haze after combined riboflavin-UVA corneal collagen cross-linking in keratoconus: in vivo confocal microscopic evaluation. Clin Experiment Ophthalmol. 2007;35(6):580–2.CrossRefPubMedGoogle Scholar
  48. 48.
    Koller T, Mrochen M, Seiler T. Complication and failure rates after corneal crosslinking. J Cataract Refract Surg. 2009;35(8):1358–62.CrossRefPubMedGoogle Scholar
  49. 49.
    Dhawan S, Rao K, Natrajan S. Complications of corneal collagen cross-linking. Aust J Ophthalmol. 2011;2011:869015.  https://doi.org/10.1155/2011/869015.CrossRefGoogle Scholar
  50. 50.
    Angunawela RI, Arnalich-Montiel F, Allan BDS. Peripheral sterile corneal infiltrates and melting after collagen crosslinking for keratoconus. J Cataract Refract Surg. 2009;35(3):606–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Donaldson KE, Braga-Mele R, Cabot F, Davidson R, Dhaliwal DK, Hamilton R, Jackson M, Patterson L, Stonecipher K, Yoo SH. ASCRS Refractive Cataract Surgery Subcommittee. Femtosecond laser-assisted cataract surgery. J Cataract Refract Surg. 2013;39(11):1753–63.CrossRefPubMedGoogle Scholar
  52. 52.
    Nagy Z, Takacs A, Filkorn T, Sarayba M. Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. J Refract Surg. 2009;25(12):1053–60.CrossRefPubMedGoogle Scholar
  53. 53.
    Kullman G, Pineda R II. Alternative applications of the femtosecond laser in ophthalmology. Semin Ophthalmol. 2010;25(5-6):256–64.CrossRefPubMedGoogle Scholar
  54. 54.
    Nagy ZZ, McAlinden C. Femtosecond laser cataract surgery. Eye Vis (Lond). 2015;2:11.CrossRefGoogle Scholar
  55. 55.
    Palanker DV, Blumenkranz MS, Andersen D, Wiltberger M, Marcellino G, Gooding P, Angeley D, Schuele G, Woodley B, Simoneau M, Friedman NJ, Seibel B, Batlle J, Feliz R, Talamo J, Culbertson W. Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography. Sci Transl Med. 2010;2(58):58ra85.CrossRefPubMedGoogle Scholar
  56. 56.
    Mayer WJ, Klaproth OK, Hengerer FH, Kohnen T. Impact of crystalline lens opacification on effective phacoemulsification time in femtosecond laser-assisted cataract surgery. Am J Ophthalmol. 2014;157(2):426–32.CrossRefPubMedGoogle Scholar
  57. 57.
    Nagy ZZ. New technology update: femtosecond laser in cataract surgery. Clin Ophthalmol. 2014;8:1157–67.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Jun JH, Hwang KY, Chang SD, Joo CK. Pupil-size alterations induced by photodisruption during femtosecond laser-assisted cataract surgery. J Cataract Refract Surg. 2015;41(2):278–85.CrossRefPubMedGoogle Scholar
  59. 59.
    Bali SJ, Hodge C, Lawless M, Roberts TV, Sutton G. Early experience with the femtosecond laser for cataract surgery. Ophthalmology. 2012;119(5):891–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Roberts TV, Sutton G, Lawless MA, Jindal-Bali S, Hodge C. Capsular block syndrome associated with femtosecond laser-assisted cataract surgery. J Cataract Refract Surg. 2011;37(11):2068–70.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of OphthalmologySturdy Eye Surgery and Laser CenterNorth AttleboroUSA
  2. 2.Boston Eye GroupBrooklineUSA
  3. 3.Department of OpthalmologyMassachusetts Ear and Eye HospitalBostonUSA

Personalised recommendations