Advertisement

Effects of MGB on Type 2 Diabetes in Morbid Obesity, and Comparison with Other Operations

  • Ahmed M. Forieg
Chapter

Abstract

Type 2 Diabetes (T2D) is a complex metabolic disease that is common worldwide. MGB is an effective operation to treat morbid obesity and cause remission of T2D reaching nearly 95%. Earlier intervention yields better results. Because of its relative simplicity, short operating time, low complication rate, generally durable weight loss, and amelioration of associated co-morbidities such as hypertension and dyslipidemia, MGB is a very favorable procedure for T2D patients.

Keywords

Mini-gastric bypass (MGB) Type 2 diabetes Sleeve gastrectomy Roux-en-Y gastric bypass Obesity Remission Hypertension Dyslipidemia 

References

  1. 1.
    International Diabetes Federation. IDF diabetes atlas. 6th ed. IDF; 2013. https://w.idf.org/sites/default/files/EN_6E_Atlas_Full_0.pdf. Accessed 18 Mar 2016.
  2. 2.
    Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87:4–14.CrossRefPubMedGoogle Scholar
  3. 3.
    Lebovitz HE. Science, clinical outcomes and the popularization of diabetes surgery. Curr Opin Endocrinol Diabetes Obes. 2012;19:359–66.CrossRefPubMedGoogle Scholar
  4. 4.
    Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358:580–91.CrossRefGoogle Scholar
  5. 5.
    Dixon JB, Zimmet P, Alberti KG, Rubino F, on behalf of the International Diabetes Federation Taskforce on E, Prevention. Bariatric surgery: an IDF statement for obese type 2 diabetes. Diabet Med. 2011;28:628–42.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Stark Casagrande S, Fradkin JE, Saydah SH, Rust KF, Cowie CC. The prevalence of meeting A1c, blood pressure, and LDL goals among people with diabetes, 1988-2010. Diabetes Care. 2013;36:2271–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Grant RW, Buse JB, Meigs JB. Quality of diabetes care in U.S. academic medical centers: low rates of medical regimen change. Diabetes Care. 2005;28:337–442.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Carlsson LM, Peltonen M, Ahlin S, Anveden A, Bouchard C, Carlsson B, et al. Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. N Engl J Med. 2012;367:695–704.CrossRefPubMedGoogle Scholar
  9. 9.
    Pajecki D, Riccioppo D, Kawamoto F, Santo M. Surgical options in type 2 diabetes. In: Faintuch J, Faintuch S, editors. Obesity and diabetes. New York: Springer International Publishing; 2015. p. 111–29.Google Scholar
  10. 10.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012;35(Suppl 1):S64–71.CrossRefGoogle Scholar
  11. 11.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36(Suppl 1):S67–74.CrossRefGoogle Scholar
  12. 12.
    Mari A, Wahren J, DeFronzo RA, Ferrannini E. Glucose absorption and production following oral glucose: comparison of compartmental and arteriovenous-difference methods. Metabolism. 1994;43:1419–25.CrossRefPubMedGoogle Scholar
  13. 13.
    Defronzo RA. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev. 1997;5:177–269.Google Scholar
  14. 14.
    Bergman RN. Non-esterified fatty acids and the liver: why is insulin secreted into the portal vein? Diabetologia. 2000;43:946–52.CrossRefPubMedGoogle Scholar
  15. 15.
    Bays H, Mandarino L, DeFronzo RA. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab. 2004;89:463–78.CrossRefPubMedGoogle Scholar
  16. 16.
    Genuth S, Alberti KG, Bennett P, Buse J, Defronzo R, Kahn R, et al. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care. 2003;26:3160–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Færch K, Borch-Johnsen K, Holst JJ, Vaag A. Pathophysiology and aetiology of impaired fasting glycaemia and impaired glucose tolerance: does it matter for prevention and treatment of Type 2 Diabetes? Diabetologia. 2009;52:1714–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Comuzzie AG, Williams JT, Martin LJ, Blangero J. Searching for genes underlying normal variation in human adiposity. J Mol Med. 2001;79:57–70.CrossRefPubMedGoogle Scholar
  19. 19.
    Dvorak RV, DeNino WF, Ades PA, Poehlman ET. Phenotypic characteristics associated with insulin resistance in metabolically obese but normal-weight young women. Diabetes. 1999;48:2210–4.CrossRefPubMedGoogle Scholar
  20. 20.
    Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46:3–10.CrossRefPubMedGoogle Scholar
  21. 21.
    Farilla L, Hui H, Bertolotto C, Kang E, Bulotta A, Di Mario U, et al. Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology. 2002;143:4397–408.CrossRefPubMedGoogle Scholar
  22. 22.
    Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with Type 2 Diabetes mellitus. J Clin Invest. 1993;91:301–7.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nauck MA, Vardarli I, Deacon CF, Holst JJ, Meier JJ. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? Diabetologia. 2011;54:10–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Odom J, Zalesin KC, Washington TL, Miller WW, Hakmeh B, Zaremba DL, et al. Behavioral predictors of weight regain after bariatric surgery. Obes Surg. 2010;20:349–56.CrossRefPubMedGoogle Scholar
  25. 25.
    Smyth-Osbourne APC, Graham J. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837–53.CrossRefGoogle Scholar
  26. 26.
    Murray P, Chune G, Raghavan V. Legacy effects from DCCT and UKPDS: what they mean and implications for future diabetes Trials. Curr Atheroscler Rep. 2010;12:432–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Bloomgarden ZT. Cardiovascular disease and glycemic treatment. Diabetes Care. 2010;33:e134–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.CrossRefGoogle Scholar
  29. 29.
    Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39.CrossRefPubMedGoogle Scholar
  30. 30.
    Pories WJ, Mehaffey JH, Staton KM. The surgical treatment of type 2 diabetes mellitus. Surg Clin North Am. 2011;91:821–36.CrossRefPubMedGoogle Scholar
  31. 31.
    Hickey MS, Pories WJ, MacDonald KG, Cory KA, Dohm GL, Swanson MS, et al. A new paradigm for type 2 diabetes mellitus: could it be a disease of the foregut? Ann Surg. 1998;227:637–44.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239:1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Leyton O. Diabetes and operation: a note on the effect of gastro-jejunostomy upon a case of mild diabetes mellitus with a low renal threshold. Lancet. 1925;206(5336):1162–3.CrossRefGoogle Scholar
  34. 34.
    Schauer PR, Burguera B, Ikramuddin S, Cottam D, Gourash W, Hamad G, et al. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg. 2003;238:467–85.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Dirksen C, Hansen DL, Madsbad S, Hvolris LE, Naver LS, Holst JJ, et al. Postprandial diabetic glucose tolerance is normalized by gastric bypass feeding as opposed to gastric feeding and is associated with exaggerated GLP-1 secretion: a case report. Diabetes Care. 2010;33:375–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Deitel M. Update: why diabetes does not resolve in some patients after bariatric surgery. Obes Surg. 2011;21:794–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Moszkowicz D, Arienzo R, Khettab I, Rahmi G, Zinzindohoue F, Berger A, et al. Sleeve gastrectomy severe complications: is it always a reasonable surgical option? Obes Surg. 2013;3:676–86.CrossRefGoogle Scholar
  38. 38.
    Christou NV, Look D, Maclean LD. Weight gain after short- and long-limb gastric bypass in patients followed for longer than 10 years. Ann Surg. 2006;244:734–40.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Higa K, Ho T, Tercero F, Yunus T, Boone KB. Laparoscopic Roux-en-Y gastric bypass: 10-year follow-up. Surg Obes Relat Dis. 2011;7:516–25.CrossRefPubMedGoogle Scholar
  40. 40.
    Rutledge R, Walsh T. Continued excellent results with the mini-gastric bypass: Six-year study in 2,410 patients. Obes Surg. 2005;15:1304–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Wang W, Wei P-L, Lee Y-C, Huang M-T, Chiu C-C, Lee W-J. Short-term results of laparoscopic mini-gastric bypass. Obes Surg. 2005;15:648–54.CrossRefPubMedGoogle Scholar
  42. 42.
    Piazza L, Ferrara F, Leanza S, Coco D, Sarvà S, Bellia A, et al. Laparoscopic mini-gastric bypass: short-term single-institute experience. Updat Surg. 2011;63:239–42.CrossRefGoogle Scholar
  43. 43.
    Kular K, Manchanda N, Rutledge R. A 6-year experience with 1,054 mini-gastric bypasses—first study from Indian subcontinent. Obes Surg. 2014;24:1430–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Georgiadou D, Sergentanis TN, Nixon A, Diamantis T, Tsigris C, Psaltopoulou T. Efficacy and safety of laparoscopic mini-gastric bypass. A systematic review. Surg Obes Relat Dis. 2014;10:984–91.CrossRefPubMedGoogle Scholar
  45. 45.
    Rutledge R, Kular KS, Deitel M. Laparoscopic mini-gastric (one-anastomosis) bypass surgery. In: Agrawal S, editor. Obesity, bariatric and metabolic surgery. New York: Springer; 2016. p. 415–23.CrossRefGoogle Scholar
  46. 46.
    Chakhtoura G, Zinzindohoué F, Ghanem Y, Ruseykin I, Dutranoy J-C, Chevallier J-M. Primary results of laparoscopic mini-gastric bypass in a French obesity-surgery specialized university hospital. Obes Surg. 2008;18:1130–3.CrossRefPubMedGoogle Scholar
  47. 47.
    Victorzon M. Single-anastomosis gastric bypass: better, faster, and safer? Scand J Surg. 2015;104:48–53.CrossRefPubMedGoogle Scholar
  48. 48.
    Luque-de-Leon E, Carbajo MA. Conversion of one-anastomosis gastric bypass (OAGB) is rarely needed if standard operative techniques are performed. Obes Surg. 2016;26:1588–91.CrossRefPubMedGoogle Scholar
  49. 49.
    Bruzzi M, Rau C, Voron T, Guenzi M, Berger A, Chevallier JM. Single anastomosis or mini-gastric bypass: long-term results and quality of life after a 5-year follow-up. Surg Obes Relat Dis. 2015;11:321–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Noun R, Skaff J, Riachi E, Daher R, Antoun NA, Nasr M. One thousand consecutive mini-gastric bypass: short- and long-term outcome. Obes Surg. 2012;22:697–703.CrossRefPubMedGoogle Scholar
  51. 51.
    Musella M, Susa A, Greco F, De Luca M, Manno E, Di Stefano C, et al. The laparoscopic mini-gastric bypass: the Italian experience: outcomes from 974 consecutive cases in a multi-center review. Surg Endosc. 2014;28:156–63.CrossRefPubMedGoogle Scholar
  52. 52.
    Deitel M, Hargroder D, Peraglie C. Mini-gastric bypass for bariatric surgery increasing worldwide. Austin J Surg. 2016;3(3):1092–6.  https://doi.org/10.26420/austinjsurg.2016.1092.CrossRefGoogle Scholar
  53. 53.
    Quan Y, Huang A, Ye M, et al. Efficacy of laparoscopic Mini Gastric Bypass for obesity and type 2 diabetes mellitus: a systematic review and meta-analysis. Gastroenterol Res Pract. 2015;2015:13.  https://doi.org/10.1155/2015/152852.CrossRefGoogle Scholar
  54. 54.
    Lee WJ, Ser K, Lee Y, et al. Laparoscopic Roux-en-Y vs mini-gastric bypass for the treatment of morbid obesity: a 10-year experience. Obes Surg. 2012;22:1827–34.CrossRefPubMedGoogle Scholar
  55. 55.
    Jammu GS, Sharma R. A 7-year clinical audit of 1107 cases comparing sleeve gastrectomy, Roux-en-Y gastric bypass and mini-gastric bypass, to determine an effective and safe bariatric and metabolic procedure. Obes Surg. 2016;26:926–32.CrossRefPubMedGoogle Scholar
  56. 56.
    Milone M, Di Minno M, Leongito M, Maietta P, Bianco P, Taffuri C, et al. Bariatric surgery and diabetes remission: sleeve gastrectomy or mini-gastric bypass. World J Gastroenterol. 2013;19:6590–7.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Plamper A, Lingohr P, Nadal J, Rheinwalt KP. Comparison of mini- gastric bypass with sleeve gastrectomy in a mainly super-obese patient group: first results. Surg Endosc. 2017;31:1156–62.CrossRefPubMedGoogle Scholar
  58. 58.
    Lee W-J, Chong K, Ser K-H, Lee Y-C, Chen S-C, Chen J-C, et al. Gastric bypass vs sleeve gastrectomy for type 2 diabetes mellitus: a randomized controlled trial. Arch Surg. 2011;146:143–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Lee WJ, Chong K, Lin YH, Wei JH, Chen SC. Laparoscopic sleeve gastrectomy versus single anastomosis (mini-) gastric bypass for the treatment of type 2 diabetes mellitus: 5-year results of a randomized trial and study of incretin effect. Obes Surg. 2014;24:1552–62.CrossRefPubMedGoogle Scholar
  60. 60.
    Milone M, Lupoli R, Maletta P, Di Minno A, Bianco P, Ambrisoni P, Goretta G, Milone F, Di Minno MN, Musella M. Lipid profile changes in patients undergoing bariatric surgery: a comparative study between sleeve gastrectomy and mini-gastric bypass. Int J Surg. 2015;14:28–32.CrossRefPubMedGoogle Scholar
  61. 61.
    Carbajo MA, Jimenez JM, Castro MJ, Ortiz-Solorzano J, Arango A. Outcomes and weight loss, fasting blood glucose and glycosylated hemoglobin in a sample of 415 obese patients, included in the database of the European Accreditation Council for Excellence Centers for Bariatric Surgery with Laparoscopic One Anastomosis Gastric Bypass. Nutr Hosp. 2014;30:1032–8.PubMedGoogle Scholar
  62. 62.
    Kim Z, Hur K. Laparoscopic mini-gastric bypass for type 2 diabetes: The preliminary report. World J Surg. 2011;35:631–6.CrossRefPubMedGoogle Scholar
  63. 63.
    Kular KS, Manchanda N, Cheema GK. Seven years of mini-gastric bypass in type II diabetes patients with a body mass index <35 kg/m2. Obes Surg. 2016;26:1457–62.CrossRefPubMedGoogle Scholar
  64. 64.
    Guenzi M, Arman G, Rau C, Cordun C, Moszkowicz D, Voron T, et al. Remission of type 2 diabetes after omega loop gastric bypass for morbid obesity. Surg Endosc. 2015;29:2669–74.CrossRefPubMedGoogle Scholar
  65. 65.
    Habashi AB, Sakr M, Hamaza Y, Sweidan A, Tacchino R, Frieg A. The role of mini-gastric bypass in the control of type 2 diabetes mellitus. Biolife. 2016;4:255–60.Google Scholar
  66. 66.
    Jammu GS, Sharma R. An eight-year experience with 189 type 2 diabetic patients after mini-gastric bypass. Integr Obes Diabetes. 2016;2(4):246–9.  https://doi.org/10.15761/IOD.1000154.CrossRefGoogle Scholar
  67. 67.
    Kim MJ, Park HK, Byun DW, Suh KI, Hur KY. Incretin levels 1 month after laparoscopic single anastomosis gastric bypass surgery in non-morbid obese type 2 diabetes patients. Asian J Surg. 2014;37:130–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of SurgeryAlexandria Main University HospitalsAlexandriaEgypt

Personalised recommendations