Complex Industrial Systems Automation Based on the Internet of Things Implementation

  • Yuriy Kondratenko
  • Oleksiy Kozlov
  • Oleksiy Korobko
  • Andriy Topalov
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 826)

Abstract

This paper presents the analysis of the Internet of Things (IoT) approach and its application for the development of embedded monitoring and automatic control systems (EMACS) for technological objects and processes that are included in complex industrial systems. The functional structure and main components of the generalized embedded monitoring and automatic control system for complex technological objects and processes based on IoT approach are given. The examples of IoT applications in design of specialized EMACS for such complex technical objects as gas turbine engines, floating docks and specialized pyrolysis complexes (SPC) are presented. Considerable attention is given to particular qualities of the functional structures, software and hardware implementation as well as multi-level human-machine interfaces (HMI) of the developed embedded systems for monitoring and automatic control of main process parameters. The developed EMACS based on IoT approach provide: high precision control of operating processes of gas turbine engines, floating docks and SPCs in the real time mode, monitoring and automatic control of their current technological parameters with high quality indicators, that leads to significant increasing of energy and economic efficiency of both given complex technical objects.

Keywords

Complex industrial systems Automation SCADA Internet of things Embedded monitoring and automatic control systems 

References

  1. 1.
    Merz, H., Hansemann, T., Hübner, C.: Building Automation: Communication Systems with EIB/KNX, LON and BACnet. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-319-73223-7 CrossRefGoogle Scholar
  2. 2.
    Mehta, B.R., Reddy, Y.J.: Chapter 7 - SCADA systems. In: Industrial Process Automation Systems, pp. 237–300 (2015)Google Scholar
  3. 3.
    Drozd, J., Drozd, A., Maevsky, D., Shapa, L.: The levels of target resources development in computer systems. In: Proceedings of IEEE East-West Design & Test Symposium (EWDTS 2014), Kiev, Ukraine, pp. 1–5 (2014)Google Scholar
  4. 4.
    Palagin, A.V., Opanasenko, V.N.: Design and application of the PLD-based reconfigurable devices. In: Adamski, M., Barkalov, A., Węgrzyn, M. (eds.) Design of Digital Systems and Devices. LNEE. Springer, Heidelberg, vol. 79, pp. 59–91 (2011).  https://doi.org/10.1007/978-3-642-17545-9_3
  5. 5.
    Pidoprigora, D.: TRACE MODE goes to network. J. World Autom. 5, 22–24 (2007). (In Russian)Google Scholar
  6. 6.
    Trunov, A.N.: An adequacy criterion in evaluating the effectiveness of a model design process. East.-Eur. J. Enterp. Technol. 1(4(73)), 36–41 (2015)CrossRefGoogle Scholar
  7. 7.
    Kondratenko, Y.P., Kozlov, O.V., Topalov, A.M., Gerasin, O.S.: Computerized system for remote level control with discrete self-testing. In: Ermolayev, V. et al. (eds.) Proceedings of the 13th International Conference on Information and Communication Technologies in Education, Research, and Industrial Applications. Integration, Harmonization and Knowledge Transfer, ICTERI’2017, CEUR-WS, Kyiv, Ukraine, vol. 1844, pp. 608–619 (2017)Google Scholar
  8. 8.
    Kondratenko, Y., Korobko, O., Kozlov, O., Gerasin O., Topalov, A.: PLC based system for remote liquids level control with radar sensor. The crossing point of intelligent data acquisition & advanced computing systems and east & west scientists. In: Proceedings of the 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Warsaw, Poland, pp. 47–52 (2015)Google Scholar
  9. 9.
    Kondratenko, Y., Korobko, O.V., Kozlov, O.V.: PLC-based systems for data acquisition and supervisory control of environment-friendly energy-saving technologies. In: Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (eds.) Green IT Engineering: Concepts, Models, Complex Systems Architectures. SSDC, vol. 74, pp. 247–267. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-44162-7_13 CrossRefGoogle Scholar
  10. 10.
    Topalov, A., Kozlov, O., Kondratenko, Y.: Control processes of floating docks based on SCADA systems with wireless data transmission. In: Perspective Technologies and Methods in MEMS Design: Proceedings of the International Conference MEMSTECH 2016, Lviv-Poljana, Ukraine, pp. 57–61 (2016)Google Scholar
  11. 11.
    Kim, H.J.: Security and vulnerability of SCADA systems over IP-based wireless sensor networks. Int. J. Distrib. Sens. Netw. 8(11), 1–10 (2012).  https://doi.org/10.1155/2012/268478 CrossRefGoogle Scholar
  12. 12.
    Aydogmus, Z., Aydogmus, O.: A web-based remote access laboratory using SCADA. IEEE Trans. Educ. 52(1), 126–132 (2009)CrossRefGoogle Scholar
  13. 13.
    Sulthana, S., Thatiparthi, G., Gunturi, R.S.: Cloud and intelligent based SCADA technology. Int. J. Adv. Res. Comput. Sci. Electron. Eng. (IJARCSEE) 2(3), 293–296 (2013)Google Scholar
  14. 14.
    Kondratenko, Y.P., Kozlov, O.V., Gerasin, O.S., Topalov, A.M., Korobko, O.V.: Automation of control processes in specialized pyrolysis complexes based on web SCADA systems. In: Proceedings of the 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Bucharest, Romania, vol. 1, pp. 107–112 (2017)Google Scholar
  15. 15.
    Weber, R.H., Weber, R.: Internet of Things. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11710-7
  16. 16.
    Giusto, D., Lera, A., Morabito, G., Atzori, L.: The Internet of Things. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-1-4419-1674-7
  17. 17.
    Uckelmann, D., Harrison, M., Michahelles, F.: Architecting the Internet of Things. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19157-2 CrossRefGoogle Scholar
  18. 18.
    Kondratenko, Y.P., Kozlov, O.V., Korobko, O.V., Topalov, A.M.: Internet of things approach for automation of the complex industrial systems. In: Ermolayev, V. et al. (eds.) Proceedings of the 13th International Conference on Information and Communication Technologies in Education, Research, and Industrial Applications. Integration, Harmonization and Knowledge Transfer, ICTERI 2017, CEUR-WS, Kyiv, Ukraine, vol. 1844, pp. 3–18 (2017)Google Scholar
  19. 19.
    Sarma, S.E., Weis, S.A., Engels, D.W.: RFID systems and security and privacy implications. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 454–469. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36400-5_33 CrossRefGoogle Scholar
  20. 20.
    Ovidiu, V., Friess, P., Guillemin, P., et al.: Internet of things strategic research roadmap. Internet Things-Global Technol. Societal Trends 1, 9–52 (2011)Google Scholar
  21. 21.
    Vermesan, O., Friess, P.: Internet of Things: Global Technological and Societal Trends from Smart Environments and Spaces to Green ICT. River Publishers, Houston (2011)Google Scholar
  22. 22.
    Payam, B., Wang, W., Henson, C., Taylor, K.: Semantics for the internet of things: early progress and back to the future. Int. J. Semant. Web Inf. Syst. (IJSWIS) 8(1), 1–21 (2012)CrossRefGoogle Scholar
  23. 23.
    Rellermeyer, J.S., Duller, M., Gilmer, K., Maragkos, D., Papageorgiou, D., Alonso, G.: The software fabric for the internet of things. In: Floerkemeier, C., Langheinrich, M., Fleisch, E., Mattern, F., Sarma, S.E. (eds.) IOT 2008. LNCS, vol. 4952, pp. 87–104. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78731-0_6 CrossRefGoogle Scholar
  24. 24.
    Vermesan, O., Friess, P.: Building the Hyperconnected Society: Internet of Things Research and Innovation Value Chains, Ecosystems and Markets. River Publishers, Houston (2015)CrossRefGoogle Scholar
  25. 25.
    Bahga, A., Madisetti, V.: Internet of Things: A Hands-On Approach, 1st edn. VPT (2014)Google Scholar
  26. 26.
    Mitton, N., Chaouchi, H., Noel, T., Watteyne, T., Gabillon, A., Capolsini, P. (eds.): InterIoT/SaSeIoT -2016. LNICST, vol. 190. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-52727-7 Google Scholar
  27. 27.
    Vermesan, O., Friess, P.: Digitising the Industry - Internet of Things Connecting the Physical, Digital and Virtual Worlds. River Publishers, Houston (2016)CrossRefGoogle Scholar
  28. 28.
    Zach, S., Bormann, C.: 6LoWPAN: The Wireless Embedded Internet, vol. 43. Wiley, Hoboken (2011)Google Scholar
  29. 29.
    Mahalle, P., Babar, S., Prasad, N.R., Prasad, R.: Identity management framework towards internet of things (IoT): roadmap and key challenges. In: Meghanathan, N., Boumerdassi, S., Chaki, N., Nagamalai, D. (eds.) CNSA 2010. CCIS, vol. 89, pp. 430–439. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14478-3_43 CrossRefGoogle Scholar
  30. 30.
    Li, R.Y.M., Li, H.C.Y., Mak, C.K., Tang, T.B.: Sustainable smart home and home automation: big data analytics approach. Int. J. Smart Home 10(8), 177–198 (2016)CrossRefGoogle Scholar
  31. 31.
    Li, S., Wang, H., Xu, T., Zhou, G.: Application study on internet of things in environment protection field. In: Yang, D. (ed.) Informatics in Control, Automation and Robotics. LNEE, Springer, Heidelberg, vol. 133, pp. 99–106 (2011).  https://doi.org/10.1007/978-3-642-25992-0_13
  32. 32.
    Lee, J., Bagheri, B., Kao, H.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufact. Lett. 3, 18–23 (2015)CrossRefGoogle Scholar
  33. 33.
    Delgado, E.: The Internet of Things: Emergence, Perspectives, Privacy and Security Issues. Nova Science Publishers, New York (2015). IncorporatedGoogle Scholar
  34. 34.
    Watts, S.: The Internet of Things (IoT): Applications, Technology, and Privacy Issues. Nova Science Publishers, New York (2016). IncorporatedGoogle Scholar
  35. 35.
    Acharjya, D.P., Geetha, M.K.: Internet of Things: Novel Advances and Envisioned Applications. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-319-53472-5 CrossRefGoogle Scholar
  36. 36.
    Giaffreda, R., Caganova, D., Li, Y., Riggio, R., Voisard, A. (eds.): Internet of Things. IoT Infrastructures. IoT360 2014. LNICST, vol. 151. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19743-2
  37. 37.
    Keramidas, G., Voros, N., Hübner, M. (eds.): Components and Services for IoT Platforms: Paving the Way for IoT Standards. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-42304-3 Google Scholar
  38. 38.
    Jeschke, S., Brecher, C., Song, H., Rawat, D.B. (eds.): Industrial Internet of Things. SSWT. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-42559-7 Google Scholar
  39. 39.
    Goes, J.: Circuits and Systems for the Internet of Things CAS4IoT. River Publishers, Houston (2017)Google Scholar
  40. 40.
    Kalidoss, R., Bhagyaveni, M.A., Shanmugavel, K.S.: Cognitive Radio - An Enabler for Internet of Things. River Publishers, Houston (2017)Google Scholar
  41. 41.
    Zadeh, L.A.: The role of fuzzy logic in modeling, identification and control. Model. Ident. Control 15(3), 191–203 (1994)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man, Cybern. 15(1), 116–132 (1985).  https://doi.org/10.1109/TSMC.1985.6313399 MATHGoogle Scholar
  43. 43.
    Piegat, A.: Fuzzy Modeling and Control. Springer, Heidelberg (2001).  https://doi.org/10.1007/978-3-7908-1824-6 CrossRefMATHGoogle Scholar
  44. 44.
    Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, Upper Saddle River (1996)Google Scholar
  45. 45.
    Pomorova, O., Savenko, O., Lysenko, S., Kryshchuk, A.: Multi-agent based approach for botnet detection in a corporate area network using fuzzy logic. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2013. CCIS, vol. 370, pp. 146–156. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38865-1_16 CrossRefGoogle Scholar
  46. 46.
    Wang, L., Kazmierski, T.J.: VHDL-AMS based genetic optimization of fuzzy logic controllers. Int. J. Comput. Math. Electr. Electron. Eng. 26(2), 447–460 (2007)CrossRefMATHGoogle Scholar
  47. 47.
    Kondratenko, Y.P., Kozlov, O.V., Klymenko, L.P., Kondratenko, G.V.: Synthesis and research of neuro-fuzzy model of ecopyrogenesis multi-circuit circulatory system. In: Jamshidi, M., Kreinovich, V., Kacprzyk, J. (eds.) Advance Trends in Soft Computing. SFSC, vol. 312, pp. 1–14. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-03674-8_1 CrossRefGoogle Scholar
  48. 48.
    Kondratenko, Y.P., Kozlov, O.V., Gerasin, O.S., Zaporozhets, Y.M.: Synthesis and research of neuro-fuzzy observer of clamping force for mobile robot automatic control system. In: Proceedings of the 2016 IEEE First International Conference on Data Stream Mining and Processing (DSMP), Lviv, Ukraine, pp. 90–95 (2016)Google Scholar
  49. 49.
    Kondratenko, Y.P., Zaporozhets, Y.M., Rudolph, J., Gerasin, O.S., Topalov, A.M., Kozlov, O.V.: Features of clamping electromagnets using in wheel mobile robots and modeling of their interaction with ferromagnetic plate. In: Proceedings of the 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Bucharest, Romania, vol. 1, pp. 453–458 (2017)Google Scholar
  50. 50.
    Kondratenko, Y.P., Korobko, O.V., Kozlov, O.V.: Synthesis and optimization of fuzzy controller for thermoacoustic plant. In: Zadeh, L.A., Abbasov, A.M., Yager, R.R., Shahbazova, S.N., Reformat, M.Z. (eds.) Recent Developments and New Direction in Soft-Computing Foundations and Applications. SFSC, vol. 342, pp. 453–467. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-32229-2_31 Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Petro Mohyla Black Sea National UniversityMykolaivUkraine
  2. 2.Admiral Makarov National University of ShipbuildingMykolaivUkraine

Personalised recommendations