Advertisement

Cyclodextrins for Essential Oils Applications

  • Miriana Kfoury
  • Lizette Auezova
  • Hélène Greige-Gerges
  • Sophie Fourmentin
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 17)

Abstract

There is a growing interest for the aromatic and biological properties of essential oils, as alternatives to synthetic chemicals. Nonetheless, essential oils and their components are poorly soluble in water, and are highly sensitive to degradation and evaporation. Encapsulation in cyclodextrins can reduce these drawbacks and improve the properties of essential oils. Cyclodextrins are non-toxic cyclic oligosaccharides obtained by enzymatic degradation of starch. Cyclodextrins inclusion complexes find applications in the food, pharmaceutical and cosmetic industries.

This chapter reviews encapsulation of essential oils in cyclodextrins. The strength of binding between cyclodextrins and essential oils components covers a wide range of formation constants with values ranging from 13 to 166,338 M−1. The encapsulation in cyclodextrins increases the aqueous solubility of essential oils up to 16-fold and reduces oil photodegradation rates up to 44-fold, while ensuring gradual release of oils. This chapter also discusses the effect of encapsulation on biological activities such as antimicrobial and antioxidant properties of essential oils. Biological effects depend on the nature and concentrations of essential oils and cyclodextrin, the tested microorganism, and other factors. Emerging cyclodextrin-based approaches for textiles and nanofibers are also discussed.

Keywords

Biological activities Cyclodextrins Essential oils Formation constant Retention Solubility Stability 

Abbreviations

CD

Cyclodextrin

CRYSMEB

Low methylated-β-cyclodextrin

EO

Essential oil

HP-β-CD

Hydroxypropyl-β-cyclodextrin

HPLC

High performance liquid chromatography

IC50

Half maximal inhibitory concentration

ITC

Isothermal titration calorimetry

LD50

Median lethal dose

MBC

Minimal bactericidal concentration

MHE

Multiple headspace extraction

MIC

Minimum inhibitory concentration

NMR

Nuclear magnetic resonance

RAMEB

Randomly methylated-β-cyclodextrin

SH-GC

Static headspace-gas chromatography

TG

Thermogravimetry

Notes

Acknowledgments

Authors thank Marc Fourmentin from the university of the Littoral Opal Coast (ULCO), France for the illustrations.

References

  1. Amidon GL, Lennernäs H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420.  https://doi.org/10.1023/A:1016212804288 CrossRefGoogle Scholar
  2. Andrade TA, Freitas TS, Araújo FO, Menezes PP, Anne G, Dória A, Rabelo AS, Quintans-Júnior LJ, Santos MRV, Bezerra DP, Serafini MR, Menezes IRS, Nunes PS, Araújo AAS, Costa MS, Campina FF, Santos ATL, Silva ARP, Coutinho HDM (2017) Physico-chemical characterization and antibacterial activity of inclusion complexes of Hyptis martiusii Benth essential oil in β-cyclodextrin. Biomed Pharmacother 89:201–207.  https://doi.org/10.1016/j.biopha.2017.01.158 CrossRefGoogle Scholar
  3. Andreu-Sevilla AJ, López-Nicolás JM, Carbonell-Barrachina ÁA, García-Carmona F (2011) Comparative effect of thea of α-, β-, or γ-cyclodextrin on main sensory and physico-chemical parameters. J Food Sci 76(5):347–353.  https://doi.org/10.1111/j.1750-3841.2011.02190.x CrossRefGoogle Scholar
  4. Anishetty R, Puri S, Garg V, Yadav AK, Mittal A (2015) Approaches for overcoming poor oral bioavailability of drugs: nanoarchitectures in focus. Int J Pharma Bio Sci 6(4):306–334Google Scholar
  5. Ansari MJ, Kohli K, Ali J, Anwer MK, Jamil S, Ahmed MM (2014) Physicochemical characterizations and dissolution behavior of curcumin and α-cyclodextrin molecular inclusion complexes. Der Pharm Lett 6(6):1–7Google Scholar
  6. Arana-Sánchez A, Estarrón-Espinosa M, Obledo-Vázquez EN, Padilla-Camberos E, Silva-Vázquez R, Lugo-Cervantes E (2010) Antimicrobial and antioxidant activities of Mexican oregano essential oils (Lippia graveolens H. B. K.) with different composition when microencapsulated in β-cyclodextrin. Lett Appl Microbiol 50(6):585–590.  https://doi.org/10.1111/j.1472-765X.2010.02837.x CrossRefGoogle Scholar
  7. Arfat YA, Benjakul S, Vongkamjan K, Sumpavapol P, Yarnpakdee S (2015) Shelf-life extension of refrigerated sea bass slices wrapped with fish protein isolate/fish skin gelatin-ZnO nanocomposite film incorporated with basil leaf essential oil. J Food Sci Technol 52:6182–6193.  https://doi.org/10.1007/s13197-014-1706-y CrossRefGoogle Scholar
  8. Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23(7):1631–1640.  https://doi.org/10.1016/j.foodhyd.2009.01.001 CrossRefGoogle Scholar
  9. Astray G, Mejuto JC, Morales J, Rial-Otero R, Simal-Gandara J (2010) Factors controlling flavors binding constants to cyclodextrins and their applications in foods. Food Res Int 43(4):1212–1218.  https://doi.org/10.1016/j.foodres.2010.02.017 CrossRefGoogle Scholar
  10. Ayala-Zavala JF, Soto-Valdez H, Gonzalez-Leon A, Alvarez-Parrilla E, Martin-Belloso O, Gonzalez-Aguilar GA (2008) Microencapsulation of cinnamon leaf (Cinnamomum zeylanicum) and garlic (Allium sativum) oils in β-cyclodextrin. J Incl Phenom Macrocycl Chem 60:359–368.  https://doi.org/10.1007/s10847-007-9385-1 CrossRefGoogle Scholar
  11. Aytac Z, Yildiz ZI, Kayaci-Senirmak F, San Keskin NO, Tekinayde T, Uyar T (2016a) Electrospinning of polymer-free cyclodextrin/geraniol-inclusion complex nanofibers: enhanced shelf-life of geraniol with antibacterial and antioxidant properties. RSC Adv 6(52):46089–46099.  https://doi.org/10.1039/c6ra07088d CrossRefGoogle Scholar
  12. Aytac Z, Yildiz ZI, Kayaci-Senirma F, San KNO, Kusku SI, Durgun E, Tekinay T, Uyat T (2016b) Fast-dissolving, prolonged release, and antibacterial cyclodextrin/limonene-inclusion complex nanofibrous webs via polymer-free electrospinning. J Agric Food Chem 64(39):7325–7334.  https://doi.org/10.1021/acs.jafc.6b02632 CrossRefGoogle Scholar
  13. Aytac Z, Ipek S, Durgun E, Tekinay T, Uyar T (2017) Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chem 233:117–124.  https://doi.org/10.1016/j.foodchem.2017.04.095 CrossRefGoogle Scholar
  14. Bai Y, Yu B, Xu X, Jin Z, Tian Y, Lu L (2010) Comparison of encapsulation properties of major garlic oil components by hydroxypropyl β-cyclodextrin. Eur Food Res Technol 231(4):519–524.  https://doi.org/10.1007/s00217-010-1307-6 CrossRefGoogle Scholar
  15. Bajpai VK, Baek K, Chul S (2012) Control of salmonella in foods by using essential oils : a review. Food Res Int 45(2):722–734.  https://doi.org/10.1016/j.foodres.2011.04.052 CrossRefGoogle Scholar
  16. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils – a review. Food Chem Toxicol 46:446–475.  https://doi.org/10.1016/j.fct.2007.09.106 CrossRefGoogle Scholar
  17. Baránková E, Dohnal V (2016) Effect of additives on volatility of aroma compounds from dilute aqueous solutions. Fluid Phase Equilib 407:217–223.  https://doi.org/10.1016/j.fluid.2015.05.038 CrossRefGoogle Scholar
  18. Bertaut E, Landy D (2014) Improving ITC studies of cyclodextrin inclusion compounds by global analysis of conventional and non-conventional experiments. Beilstein J Org Chem 10:2630–2641.  https://doi.org/10.3762/bjoc.10.275 CrossRefGoogle Scholar
  19. Berthelot K, Estevez Y, Deffieux A, Peruch F (2012) Isopentenyl diphosphate isomerase: a checkpoint to isoprenoid biosynthesis. Biochimie 94(8):1621–1634.  https://doi.org/10.1016/j.biochi.2012.03.021 CrossRefGoogle Scholar
  20. Bethanis K, Tzamalis P, Tsorteki F, Kokkinou A, Christoforides E, Mentzafos D (2013) Structural study of the inclusion compounds of thymol, carvacrol and eugenol in β-cyclodextrin by X-ray crystallography. J Incl Phenom Macro 77(1–4):163–173.  https://doi.org/10.1007/s10847-012-0230-9 CrossRefGoogle Scholar
  21. Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC (2014) Essential oils loaded in nanosystems : a developing strategy for a successful therapeutic approach. Evid Based Complement Alternat Med. Article ID 651593.  https://doi.org/10.1155/2014/651593
  22. Bourgeois W, Burgess JE, Stuetz RM (2001) On-line monitoring of wastewater quality: a review. J Chem Technol Biotechnol 76(4):337–348.  https://doi.org/10.1002/jctb.393 CrossRefGoogle Scholar
  23. Brasil IM, Gomes C, Puerta-gomez A, Castell-perez ME, Moreira RG (2012) Polysaccharide-based multilayered antimicrobial edible coating enhances quality of fresh-cut papaya. Food Sci Technol 47(1):39–45.  https://doi.org/10.1016/j.lwt.2012.01.005 CrossRefGoogle Scholar
  24. Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59(7):645–666.  https://doi.org/10.1016/j.addr.2007.05.012 CrossRefGoogle Scholar
  25. Budryn G, Zaczyńska D, Rachwał-Rosiak D, Oracz J (2015) Changes in properties of food proteins after interaction with free and β encapsulated hydroxycinnamic acids. Eur Food Res Technol 240:1157–1166.  https://doi.org/10.4315/0362-028X-68.5.919 CrossRefGoogle Scholar
  26. Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods — a review. Int J Food Microbiol 94:223–253.  https://doi.org/10.1016/j.ijfoodmicro.2004.03.022 CrossRefGoogle Scholar
  27. Burt SA, Vlielander R, Haagsman HP, Veldhuizen EJA (2005) Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157:H7 by addition of food stabilizers. J Food Prot 68(5):919–926.  https://doi.org/10.4315/0362-028X-68.5.919 CrossRefGoogle Scholar
  28. Carrier RL, Miller LA, Ahmed I (2007) The utility of cyclodextrins for enhancing oral bioavailability. J Control Release 123:78–99.  https://doi.org/10.1016/j.jconrel.2007.07.018 CrossRefGoogle Scholar
  29. Carvalho IT, Estevinho BN, Santos L (2016) Application of microencapsulated essential oils in cosmetic and personal healthcare products–a review. Int J Cosmet Sci 38:109–119.  https://doi.org/10.1111/ics.12232 CrossRefGoogle Scholar
  30. Celebioglu A, Kayaci-Senirmak F, İpek S, Durgunab E, Uyar T (2016) Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property. Food Funct 7:3141–3153.  https://doi.org/10.1039/C6FO00569A CrossRefGoogle Scholar
  31. Cetin Babaoglu H, Bayrak A, Ozdemir N, Ozgun N (2017) Encapsulation of clove essential oil in hydroxypropyl beta-cyclodextrin for characterization, controlled release, and antioxidant activity. J Food Process Preserv. In press.  https://doi.org/10.1111/jfpp.13202
  32. Chaves AV, He ML, Yang WZ, Hristov AN, McAllister TA, Benchaar C (2008) Effects of essential oils on proteolytic, deaminative and methanogenic activities of mixed ruminal bacteria. Can J Anim Sci 88:117–122.  https://doi.org/10.4141/CJAS07061 CrossRefGoogle Scholar
  33. Chen H, Ji H, Zhou X, Wang L (2010) Green synthesis of natural benzaldehyde from cinnamon oil catalyzed by hydroxypropyl-β-cyclodextrin. Tetrahedron 66(52):9888–9893.  https://doi.org/10.1016/j.tet.2010.10.063 CrossRefGoogle Scholar
  34. Ciobanu A, Mallard I, Landy D, Brabie G, Nistor D, Fourmentin S (2012) Inclusion interactions of cyclodextrins and crosslinked cyclodextrin polymers with linalool and camphor in Lavandula angustifolia essential oil. Carbohydr Polym 87(3):1963–1970.  https://doi.org/10.1016/j.carbpol.2011.10.005 CrossRefGoogle Scholar
  35. Ciobanu A, Landy D, Fourmentin S (2013) Complexation efficiency of cyclodextrins for volatile flavor compounds. Food Res Int 53(1):110–114.  https://doi.org/10.1016/j.foodres.2013.03.048 CrossRefGoogle Scholar
  36. Costa P, Medronho B, Gonc S, Romano A (2015) Cyclodextrins enhance the antioxidant activity of essential oils from three Lamiaceae species. Ind Crop Prod 70:341–346.  https://doi.org/10.1016/j.indcrop.2015.03.065 CrossRefGoogle Scholar
  37. Costa G, Gidaro MC, Vulla D, Supuran CT, Alcaro S (2016) Active components of essential oils as anti-obesity potential drugs investigated by in silico techniques. J Agric Food Chem 64(26):5295–5300.  https://doi.org/10.1021/acs.jafc.6b02004 CrossRefGoogle Scholar
  38. Crini G (2014) Review: a history of cyclodextrins. Chem Rev 114(21):10940–10975.  https://doi.org/10.1021/cr500081p CrossRefGoogle Scholar
  39. da Silveira E, Sá RDC, Andrade LN, De Oliveira RDRB, De Sousa DP (2014) A review on anti-inflammatory activity of phenylpropanoids found in essential oils. Molecules 19(2):1459–1480.  https://doi.org/10.3390/molecules19021459 CrossRefGoogle Scholar
  40. De Vos P, Faas MM, Spasojevic M, Sikkema J (2010) Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 20(4):292–302.  https://doi.org/10.1016/j.idairyj.2009.11.008 CrossRefGoogle Scholar
  41. Decock G, Fourmentin S, Surpateanu GG, Landy D, Decock P, Surpateanu G (2006) Experimental and theoretical study on the inclusion compounds of aroma components with β-cyclodextrins. Supramol Chem 18(6):477–482.  https://doi.org/10.1080/10610270600665749 CrossRefGoogle Scholar
  42. Decock G, Landy D, Surpateanu G, Fourmentin S (2008) Study of the retention of aroma components by cyclodextrins by static headspace gas chromatography. J Incl Phenom Macrocycl Chem 62(3–4):297–302.  https://doi.org/10.1007/s10847-008-9471-z CrossRefGoogle Scholar
  43. Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39(9):1033–1046.  https://doi.org/10.1016/S0032-9592(03)00258-9 CrossRefGoogle Scholar
  44. Demian BA (2000) Correlation of the solubility of several aromatics and terpenes in aqueous hydroxypropyl-β-cyclodextrin with steric and hydrophobicity parameters. Carbohydr Res 328:635–639.  https://doi.org/10.1016/S0008-6215(00)00139-7 CrossRefGoogle Scholar
  45. Dima C, Dima S (2015) Essential oils in foods: extraction, stabilization, and toxicity. Curr Opin Food 5:29–35.  https://doi.org/10.1016/j.cofs.2015.07.003 CrossRefGoogle Scholar
  46. Dima C, Cotarlet M, Tiberius B, Bahrim G, Alexe P, Dima S (2014) Encapsulation of coriander essential oil in beta-cyclodextrin: antioxidant and antimicrobial properties evaluation. Rom Biotechnol Lett 19(2):9128–9141.  https://doi.org/10.1016/j.foodhyd.2016.11.014 CrossRefGoogle Scholar
  47. Donze C, Coleman W (1993) β-CD inclusion complexes: relative selectivity of terpene and aromatic guest molecules studied by competitive inclusion experiments. J Incl Phenom Macrocycl Chem 62(3–4):297–302.  https://doi.org/10.1007/BF00708758 CrossRefGoogle Scholar
  48. Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316.  https://doi.org/10.1046/j.1365-2672.2000.00969.x CrossRefGoogle Scholar
  49. Dwivedy AK, Kumar M, Upadhyay N, Prakash B, Dubey NK (2016) Plant essential oils against food borne fungi and mycotoxins. Curr Opin Food Sci 11:16–21.  https://doi.org/10.1016/j.cofs.2016.08.010 CrossRefGoogle Scholar
  50. Eby GAIII (1992) Taste-masked zinc acetate com- positions for oral absorption. US patent 5,095,035. March 10:1992Google Scholar
  51. Eftink MR, Andy ML, Bystrom K, Perlmutter HD, Kristol DS (1989) Cyclodextrin inclusion complexes: studies of the variation in the size of slicyclic guests. J Am Chem Soc 111(17):6765–6772.  https://doi.org/10.1021/ja00199a041 CrossRefGoogle Scholar
  52. Elbary AA, El Nabarawi MA, Ali AMA, Hassan AH (2013) Formulation and evaluation of taste-masked orally disintegrating tablets of nicergoline based on β-cyclodextrin inclusion complexation. Int. J Drug Deliv 5(1):110–120Google Scholar
  53. Fenyvesi E, Gruiz K, Verstichel S, BDe W, Leitgib L, Csabai K, Szaniszlo N (2005) Biodegradation of cyclodextrins in soil. Chemosphere 60:1001–1008.  https://doi.org/10.1016/j.chemosphere.2005.01.026 CrossRefGoogle Scholar
  54. Fenyvesi E, Szemán J, Csabai K, Malanga M, Szente L (2014) Methyl-beta-cyclodextrins: the role of number and types of substituents in solubilizing power. J Pharm Sci 103(5):1443–1452.  https://doi.org/10.1002/jps.23917 CrossRefGoogle Scholar
  55. Ferrazza R, Rossi B, Guella G (2014) DOSY-NMR and Raman investigations on the self-aggregation and cyclodextrin complexation of vanillin. J Phys Chem B 118(25):7147–7155CrossRefGoogle Scholar
  56. Fisher K, Phillips C (2009) The mechanism of action of a citrus oil blend against Enterococcus faecium and Enterococcus faecalis. J Appl Microbiol 106:1343–1349.  https://doi.org/10.1111/j.1365-2672.2008.04102.x CrossRefGoogle Scholar
  57. Fourmentin S, Ciobanu A, Landy D, Wenz G (2013) Space filling of β-cyclodextrin and β-cyclodextrin derivatives by volatile hydrophobic guests. Beilstein J Org Chem 9:1185–1191.  https://doi.org/10.3762/bjoc.9.133 CrossRefGoogle Scholar
  58. Galvão JG, Silva VF, Ferreira SG, França FRM, Santos DA, Freitas LS, Alves PB, Araújo AAS, Cavalcanti SCH, Nunes RS (2015) β-cyclodextrin inclusion complexes containing Citrus sinensis (L.) Osbeck essential oil: an alternative to control Aedes aegypti larvae. Thermochim Acta 608:14–19.  https://doi.org/10.1016/j.tca.2015.04.001 CrossRefGoogle Scholar
  59. Gould S, Scott RC (2005) 2-Hydroxypropyl-β-cyclodextrin (HP- β -CD): a toxicology review. Food Chem Toxicol 43(10):1451–1459.  https://doi.org/10.1016/j.fct.2005.03.007 CrossRefGoogle Scholar
  60. Gray J, Caparros-Ruiz D, Grotewold E (2012) Grass phenylpropanoids: regulate before using! Plant Sci 184:112–120.  https://doi.org/10.1016/j.plantsci.2011.12.008 CrossRefGoogle Scholar
  61. Griffin S, Wyllie SG, Markham J (1999) Determination of octanol – water partition coefficient for terpenoids using reversed-phase high-performance liquid chromatography. J Chromatogr A 864:221–228.  https://doi.org/10.1016/S0021-9673(99)01009-2 CrossRefGoogle Scholar
  62. Hǎdǎrugǎ NG, Hǎdǎrugǎ DI, Isengard HD (2012) Water content of natural cyclodextrins and their essential oil complexes : a comparative study between Karl Fischer titration and thermal methods. Food Chem 132:1741–1748.  https://doi.org/10.1016/j.foodchem.2011.11.003 CrossRefGoogle Scholar
  63. Hǎdǎrugǎ DI, Ünlüsayin M, Gruia AT, Bir C, Rusu G, Nicoleta GH (2016) Thermal and oxidative stability of Atlantic salmon oil (Salmo salar L.) and complexation with β –cyclodextrin. Beilstein J Org Chem 12:179–191.  https://doi.org/10.3762/bjoc.12.20 CrossRefGoogle Scholar
  64. Hernandez-Sanchez P, Lopez-Miranda S, Lucas-Abellan C, Nunez-Delicado E (2012) Complexation of eugenol (EG), as main component of clove oil and as pure compound, with β- and HP-β-CDs. Food Nutr Sci 3:716–723.  https://doi.org/10.4236/fns.2012.36097 CrossRefGoogle Scholar
  65. Hernández-Sánchez P, López-Miranda S, Guardiola L, Serrano-Martínez A, Gabaldón JA, Nuñez-Delicado E (2017) Optimization of a method for preparing solid complexes of essential clove oil with β-cyclodextrins. J Sci Food Agric 97(2):420–426.  https://doi.org/10.1002/jsfa.7781 CrossRefGoogle Scholar
  66. Higuchi T, Connors KA (1965) Phase-solubility techniques. Adv Anal Chem Instrum 4:117–212Google Scholar
  67. Hill LE, Gomes C, Taylor TM (2013) Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans -cinnamaldehyde , eugenol , cinnamon bark , and clove bud extracts) for antimicrobial delivery applications. Food Sci Technol 51(1):86–93.  https://doi.org/10.1016/j.lwt.2012.11.011 CrossRefGoogle Scholar
  68. Ho BT, Joyce DC, Bhandari BR (2011) Release kinetics of ethylene gas from ethylene–α-cyclodextrin inclusion complexes. Food Chem 129(2):259–266.  https://doi.org/10.1016/j.foodchem.2011.04.035 CrossRefGoogle Scholar
  69. Hou L, Wang J, Zhang D (2013) Optimization of debittering of soybean antioxidant hydrolysates with β-cyclodextrins using response surface methodology. J Food Sci Technol 50(3):521–527.  https://doi.org/10.1007/s13197-011-0358-4 CrossRefGoogle Scholar
  70. Hougeir FG, Kircik L (2012) A review of delivery systems in cosmetics. Dermatol Ther 25(3):234–237.  https://doi.org/10.1111/j.1529-8019.2012.01501.x CrossRefGoogle Scholar
  71. Huang Y, Zhao J, Zhou L, Wang J, Gong Y, Chen X, Guo Z, Wang Q, Jiang W (2010) Antifungal activity of the essential oil of Illicium verum fruit and its main component trans-anethole. Molecules 15(11):7558–7569.  https://doi.org/10.3390/molecules15117558 CrossRefGoogle Scholar
  72. Hyldgaard M, Mygind T, Meyer RL, Debabov D (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 3:1–24.  https://doi.org/10.3389/fmicb.2012.00012 CrossRefGoogle Scholar
  73. Jambhekar SS, Breen P (2016) Cyclodextrins in pharmaceutical formulations II : solubilization, binding constant, and complexation efficiency. Drug Discov Today 21(2):363–368.  https://doi.org/10.1016/j.drudis.2015.11.016 CrossRefGoogle Scholar
  74. Jayasena DD, Jo C (2014) Potential application of essential oils as natural antioxidants in meat and meat products: a review. Food Rev Int 30(1):71–90.  https://doi.org/10.1080/87559129.2013.853776 CrossRefGoogle Scholar
  75. Jiang S, Li JN, Jiang ZT (2010) Inclusion reactions of β-cyclodextrin and its derivatives with cinnamaldehyde in Cinnamomum loureirii essential oil. Eur Food Res Technol 230(4):543–550.  https://doi.org/10.1007/s00217-009-1192-z CrossRefGoogle Scholar
  76. Kamimura JA, Santos EH, Hill LE, Gomes CL (2014) Antimicrobial and antioxidant activities of carvacrol microencapsulated in hydroxypropyl-beta-cyclodextrin. Food Sci Technol 57(2):701–709.  https://doi.org/10.1016/j.lwt.2014.02.014 CrossRefGoogle Scholar
  77. Kant A, Linforth RST, Hort J, Taylor AJ (2004) Effect of β-cyclodextrin on aroma release and flavor perception. J Agric Food Chem 52(7):2028–2035.  https://doi.org/10.1021/jf0307088 CrossRefGoogle Scholar
  78. Kapetanakou AE, Skandamis PN (2016) Applications of active packaging for increasing microbial stability in foods: natural volatile antimicrobial compounds. Curr Opin Food Sci 12:1–12.  https://doi.org/10.1016/j.cofs.2016.06.001 CrossRefGoogle Scholar
  79. Karapinar M, Aktuǧ SE (1987) Inhibition of foodborne pathogens by thymol, eugenol, menthol and anethole. Int J Food Microbiol 4(2):161–166.  https://doi.org/10.1016/0168-1605(87)90023-7 CrossRefGoogle Scholar
  80. Karathanos VT, Mourtzinos I, Yannakopoulou K, Andrikopoulos NK (2007) Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with beta-cyclodextrin. Food Chem 101(2):652–658.  https://doi.org/10.1016/j.foodchem.2006.01.053 CrossRefGoogle Scholar
  81. Kfoury M, Landy D, Auezova L, Greige-Gerges H, Fourmentin S (2014a) Effect of cyclodextrin complexation on phenylpropanoids’ solubility and antioxidant activity. Beilstein J Org Chem 10:2322–2331.  https://doi.org/10.3762/bjoc.10.241 CrossRefGoogle Scholar
  82. Kfoury M, Auezova L, Greige-Gerges H, Ruellan S, Fourmentin S (2014b) Cyclodextrin, an efficient tool for trans-anethole encapsulation: chromatographic, spectroscopic, thermal and structural studies. Food Chem 164:454–461.  https://doi.org/10.1016/j.foodchem.2014.05.052 CrossRefGoogle Scholar
  83. Kfoury M, Auezova L, Fourmentin S, Greige-Gerges H (2014c) Investigation of monoterpenes complexation with hydroxypropyl-beta-cyclodextrin. J Incl Phenom Macrocycl Chem 80:51–60.  https://doi.org/10.1007/s10847-014-0385-7 CrossRefGoogle Scholar
  84. Kfoury M, Balan R, Landy D, Nistor D, Fourmentin S (2015a) Investigation of the complexation of essential oil components with cyclodextrins. Supramol Chem 27(9):1–10.  https://doi.org/10.1080/10610278.2015.1051977 CrossRefGoogle Scholar
  85. Kfoury M, Auezova L, Ruellan S, Greige-Gerges H, Fourmentin S (2015b) Complexation of estragole as pure compound and as main component of basil and tarragon essential oils with cyclodextrins. Carbohydr Polym 118:156–164.  https://doi.org/10.1016/j.carbpol.2014.10.073 CrossRefGoogle Scholar
  86. Kfoury M, Auezova L, Greige-Gerges H, Fourmentin S (2015c) Promising applications of cyclodextrins in food: improvement of essential oils retention, controlled release and antiradical activity. Carbohydr Polym 131:264–272.  https://doi.org/10.1016/j.carbpol.2015.06.014 CrossRefGoogle Scholar
  87. Kfoury M, Lounès-Hadj Sahraoui A, Bourdon N, Laruelle F, Fontaine J, Auezova L, Greige-Gerges H, Fourmentin S (2016a) Solubility, photostability and antifungal activity of phenylpropanoids encapsulated in cyclodextrins. Food Chem 196:518–525.  https://doi.org/10.1016/j.foodchem.2015.09.078 CrossRefGoogle Scholar
  88. Kfoury M, Borgie M, Verdin A, Ledoux F, Courcot D, Auezova L, Fourmentin S (2016b) Essential oil components decrease pulmonary and hepatic cells inflammation induced by air pollution particulate matter. Environ Chem Lett 14:345–351.  https://doi.org/10.1007/s10311-016-0572-4 CrossRefGoogle Scholar
  89. Kfoury M, Hadaruga NG, Hadaruga DI, Fourmentin S (2016c) Cyclodextrins as encapsulation material for flavors and aroma. A volume in nanotechnology in the agri-food industry.. ISBN: 978-0-12-804307-3.Google Scholar
  90. Kfoury M, Landy D, Ruellan S, Auezova L, Greige-Gerges H, Fourmentin S (2016d) Determination of formation constants and structural characterization of cyclodextrin inclusion complexes with two phenolic isomers: carvacrol and thymol. Beilstein J Org Chem 12(12):29–42.  https://doi.org/10.3762/bjoc.12.5 CrossRefGoogle Scholar
  91. Kfoury M, Landy D, Ruellan S, Auezova L, Greige-gerges H, Fourmentin S (2016e) Nootkatone encapsulation by cyclodextrins : effect on water solubility and photostability. Food Chem 236:41–48.  https://doi.org/10.1016/j.foodchem.2016.12.086 CrossRefGoogle Scholar
  92. Kfoury M, Auezova L, Greige-Gerges H, Larsen KL, Fourmentin S (2016f) Release studies of trans-anethole from β-cyclodextrin solid inclusion complexes by multiple headspace extraction. Carbohydr Polym 151:1245–1250.  https://doi.org/10.1016/j.carbpol.2016.06.079 CrossRefGoogle Scholar
  93. Kfoury M, Auezova L, Greige-Gerges H, Fourmentin S (2016g) Development of a Total organic carbon method for the quantitative determination of solubility enhancement by cyclodextrins : application to essential oils. Anal Chim Acta 918:21–25.  https://doi.org/10.1016/j.aca.2016.03.013 CrossRefGoogle Scholar
  94. Kfoury M, Pipkin JD, Antle V, Fourmentin S (2017) Captisol®: an efficient carrier and solubilizing agent for essential oils and their components. Flavour Fragr J 32(5):340–346.  https://doi.org/10.1002/ffj.3395 CrossRefGoogle Scholar
  95. Kolb B, Ettre LS (2006) Static headspace-gas chromatography theory and practice, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  96. Kurkov SV, Loftsson T (2013) Cyclodextrins. Int J Pharm 453(1):167–180.  https://doi.org/10.1016/j.ijpharm.2012.06.055 CrossRefGoogle Scholar
  97. Landy D, Fourmentin S, Salome M, Surpateanu G (2000) Analytical improvement in measuring formation constants of inclusion complexes between β-cyclodextrin and phenolic compounds. J Incl Phenom 38(1–4):187–198.  https://doi.org/10.1023/A:1008156110999 CrossRefGoogle Scholar
  98. Landy D, Tetart F, Truant E, Blach F, Fourmentin S, Surpateanu G (2007) Development of a competitive continuous variation plot for the determination of inclusion compounds stoichiometry. J Incl Phenom Macrocycl Chem 57:409–413.  https://doi.org/10.1007/s10847-006-9226-7 CrossRefGoogle Scholar
  99. Lee JH, Lee J, Song KB (2015) Development of a chicken feet protein film containing essential oils. Food Hydrocoll 46:208–215.  https://doi.org/10.1016/j.foodhyd.2014.12.020 CrossRefGoogle Scholar
  100. Li W, Du L, Li M (2011) Alkaloids and flavonoids as α-adrenergic receptor antagonists. Curr Med Chem 18:4923–4932.  https://doi.org/10.2174/092986711797535209 CrossRefGoogle Scholar
  101. Li W, Liu X, Yang Q, Zhang N, Du Y, Zhu H (2015) Preparation and characterization of inclusion complex of benzyl isothiocyanate extracted from papaya seed with β-cyclodextrin. Food Chem 184:99–104.  https://doi.org/10.1016/j.foodchem.2015.03.091 CrossRefGoogle Scholar
  102. Liang H, Yuan Q, Vriesekoop F, Lv F (2012) Effects of cyclodextrins on the antimicrobial activity of plant-derived essential oil compounds. Food Chem 135(3):1020–1027.  https://doi.org/10.1016/j.foodchem.2012.05.054 CrossRefGoogle Scholar
  103. Lipinski CA (2000) Drug-like properties and the cause of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249.  https://doi.org/10.1016/S1056-8719(00)00107-6 CrossRefGoogle Scholar
  104. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341.  https://doi.org/10.1016/j.ddtec.2004.11.007 CrossRefGoogle Scholar
  105. Liu L, Guo QX (2002) The driving forces in the inclusion complexation of cyclodextrins. J Incl Phenom Macrocycl Chem 42(1):1–14.  https://doi.org/10.1023/A:1014520830813 CrossRefGoogle Scholar
  106. Llana-Ruiz-Cabello M, Gutiérrez-Praena D, Puerto M, Pichardo S, Jos Á, Cameán AM (2015) In vitro pro-oxidant/antioxidant role of carvacrol, thymol and their mixture in the intestinal Caco-2 cell line. Toxicol In Vitro 29(4):647–656.  https://doi.org/10.1016/j.tiv.2015.02.006 CrossRefGoogle Scholar
  107. Loftsson T, Brewster ME (2010) Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol 62(11):1607–1621.  https://doi.org/10.1111/j.2042-7158.2010.01030.x CrossRefGoogle Scholar
  108. Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1–11.  https://doi.org/10.1016/j.ijpharm.2006.10.044 CrossRefGoogle Scholar
  109. Loftsson T, Hreinsdóttir D, Másson M (2005) Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 302(1–2):18–28.  https://doi.org/10.1016/j.ijpharm.2005.05.042 CrossRefGoogle Scholar
  110. Lopez-Nicolas JM, Perez-Lopez AJ, Carbonell-Barrachina A, Garcia-Carmona F (2007) Use of natural and modified cyclodextrins as inhibiting agents of peach juice enzymatic browning. J Agric Food Chem 55(13):5312–5319.  https://doi.org/10.1021/jf070499h CrossRefGoogle Scholar
  111. Lopez-Nicolas JM, Andreu-Sevilla AJ, Carbonell-Barrachina ÁA, García-Carmona F (2009) Effects of addition of α-cyclodextrin on the sensory quality, volatile compounds, and color parameters of fresh pear juice. J Agric Food Chem 57(20):9668–9675.  https://doi.org/10.1021/jf901919t CrossRefGoogle Scholar
  112. Lopez-Nicolas JM, Rodríguez-Bonilla P, García-Carmona F (2014) Cyclodextrins and antioxidants. Crit Rev Food Sci 54(2):251–276.  https://doi.org/10.1080/10408398.2011.582544 CrossRefGoogle Scholar
  113. Lu Z, Cheng B, Hu Y, Zhang Y, Zou G (2009) Complexation of resveratrol with cyclodextrins: solubility and antioxidant activity. Food Chem 113(1):17–20.  https://doi.org/10.1016/j.foodchem.2008.04.042 CrossRefGoogle Scholar
  114. Lucas-Abellán C, Mercader-Ros MT, Zafrilla MP, Fortea MI, Gabaldon JA, Nunez-Delicado E (2008) ORAC-fluorescein assay to determine the oxygen radical absorbance capacity of resveratrol complexed in cyclodextrins. J Agric Food Chem 56:2254–2259.  https://doi.org/10.1021/jf0731088 CrossRefGoogle Scholar
  115. Marchese A, Erdogan I, Daglia M, Barbieri R, Di A, Fazel S, Gortzi O, Izadi M, Mohammad S (2016) Antibacterial and antifungal activities of thymol: a brief review of the literature. Food Chem 210:402–414.  https://doi.org/10.1016/j.foodchem.2016.04.111 CrossRefGoogle Scholar
  116. Marques HMC (2010) A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J 25(5):313–326.  https://doi.org/10.1002/ffj.2019 CrossRefGoogle Scholar
  117. Marreto RN, Almeida EECV, Alves PB, Niculau ES, Nunes RS, Matos CRS, Araújo AAS (2008) Thermal analysis and gas chromatography coupled mass spectrometry analyses of hydroxypropyl-β-cyclodextrin inclusion complex containing Lippia gracilis essential oil. Thermochim Acta 475:53–58.  https://doi.org/10.1016/j.tca.2008.06.015 CrossRefGoogle Scholar
  118. Martina K, Binello A, Lawson D, Jicsinszky L, Cravotto G (2013) Recent applications of cyclodextrins as food additives and in food processing. Curr Nutr Food Sci 9(3):167–179.  https://doi.org/10.2174/1573401311309030001 CrossRefGoogle Scholar
  119. Martins ADP, Craveiro AA, MacHado MIL, Raffin FN, Moura TF, Novák C, Ehen Z (2007) Preparation and characterisation of Mentha x villosa Hudson oil–β-cyclodextrin complex. J Therm Anal Calorim 88(2):363–371.  https://doi.org/10.1007/s10973-005-7407-z CrossRefGoogle Scholar
  120. Mascheroni E, Fuenmayor CA, Cosio MS, Di Silvestro G, Piergiovanni L, Mannino S, Schiraldi A (2013) Encapsulation of volatiles in nanofibrous polysaccharide membranes for humidity-triggered release. Carbohydr Polym 98(1):17–25.  https://doi.org/10.1016/j.carbpol.2013.04.068 CrossRefGoogle Scholar
  121. Mazzobre MF, dos Santos CI, Buera M (2011) Solubility and stability of β- cyclodextrin-terpineol inclusion complex as affected by water. Food Biophys 6(2):274–280.  https://doi.org/10.1007/s11483-011-9208-1 CrossRefGoogle Scholar
  122. Menezes PDP, Serafini MR, de Carvalho YMBG, Soares Santana DV, Lima BS, Quintans-Júnior LJ, Marreto RN, de Aquino TM, Sabino AR, Scotti L, Scotti MT, Grangeiro-Júnior S, de Souza Araújo AA (2016) Kinetic and physical-chemical study of the inclusion complex of β- cyclodextrin containing carvacrol. J Mol Struct 1125:323–330.  https://doi.org/10.1016/j.molstruc.2016.06.062 CrossRefGoogle Scholar
  123. Miguel MG, Dandlen SA, Figueiredo AC, Pedro LG, Barroso JG, Marques MH (2010) Comparative evaluation of the antioxidant activities of thymol and carvacrol and the corresponding β-cyclodextrin complexes. Acta Hortic 853:363–368.  https://doi.org/10.17660/ActaHortic.2010.853.44 CrossRefGoogle Scholar
  124. Miller LA, Carrier RL, Ahmed I (2007) Practical considerations in development of solid dosage forms that contain cyclodextrin. J Pharm Sci 96(7):1691–1707.  https://doi.org/10.1002/jps.20831 CrossRefGoogle Scholar
  125. Miron D, Battisti F, Schwengber Ten Caten C, Mayorga P, Scherman Schapoval EE (2012) Spectrophotometric simultaneous determination of citral isomers in cyclodextrin complexes with partial least squares supported approach. Curr Pharm Anal 8(4):401–408.  https://doi.org/10.2174/157341212803341735 CrossRefGoogle Scholar
  126. Moreira SM, de Carvalho W, Alexandrino AC, de Paula HCB, Rodrigues MCP, de Figueiredo RW, Maia GA, de Figueiredo EMAT, Brasil IM (2014) Int J Food Sci Technol 49(10):2192–2203.  https://doi.org/10.1111/ijfs.12535 CrossRefGoogle Scholar
  127. Morelli CL, Mahrous M, Belgacem MN, Branciforti MC, Bretas RES, Bras J (2015) Natural copaiba oil as antibacterial agent for bio-based active packaging. Ind Crop Prod 70:134–141.  https://doi.org/10.1016/j.indcrop.2015.03.036 CrossRefGoogle Scholar
  128. Mourtzinos I, Kalogeropoulos N, Papadakis SE, Konstantinou K, Karathanos VT (2008) Encapsulation of nutraceutical monoterpenes in β-cyclodextrin and modified starch. J Food Sci 73(1):89–94.  https://doi.org/10.1111/j.1750-3841.2007.00609.x CrossRefGoogle Scholar
  129. Mura P (2014) Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review. J Pharm Biomed Anal 10:238–250.  https://doi.org/10.1016/j.jpba.2014.02.022 CrossRefGoogle Scholar
  130. Murbach Teles Andrade BF, Conti BJ, Santiago KB, Fernandes Junior A, Sforcin JM (2014) Cymbopogon martinii essential oil and geraniol at noncytotoxic concentrations exerted immunomodulatory/ anti-inflammatory effects in human monocytes. J Pharm Pharmacol 66(10):1491–1496.  https://doi.org/10.1111/jphp.12278 CrossRefGoogle Scholar
  131. Nazzaro F, Fratianni F, Martino LD (2013) Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6(12):1451–1474.  https://doi.org/10.3390/ph6121451 CrossRefGoogle Scholar
  132. Neoh TL, Yoshii H, Furuta T (2006) Encapsulation and release characteristics of carbon dioxide in α-cyclodextrin. J Incl Phenom Macrocycl Chem 56:125–133.  https://doi.org/10.1007/s10847-006-9073-6 CrossRefGoogle Scholar
  133. Nieddu M, Rassu G, Boatto G, Bosi P, Trevisi P, Giunchedi P, Carta A, Gavini E (2014) Improvement of thymol properties by complexation with cyclodextrins: In vitro and in vivo studies. Carbohydr Polym 102:393–399.  https://doi.org/10.1016/j.carbpol.2013.10.084 CrossRefGoogle Scholar
  134. Nowakowski M, Ejchart A (2014) Complex formation of fenchone with α- cyclodextrin: NMR titrations. J Incl Phenom Macro 79(3–4):337–342.  https://doi.org/10.1007/s10847-013-0356-4 CrossRefGoogle Scholar
  135. Numanoglu U, Şen T, Tarimci N, Kartal M, Koo OMY, Önyüksel H (2007) Use of cyclodextrins as a cosmetic delivery system for fragrance materials: linalool and benzyl acetate. AAPS PharmSciTech 8(4):85.  https://doi.org/10.1208/pt0804085 CrossRefGoogle Scholar
  136. Nunez-Delicado E, Sanchez-Ferrer A, Garcia-Carmona F (1997) Cyclodextrins as secondary antioxidants: synergism with ascorbic acid. J Agric Food Chem 45(8):2830–2835.  https://doi.org/10.1021/jf9609800 CrossRefGoogle Scholar
  137. Pagington JS (1987) β-Cyclodextrin: the success of molecular inclusion. Chem Br 23(5):455–458Google Scholar
  138. Papajani V, Haloci E, Goci E, Shkreli R, Manfredini S (2015) Evaluation of antifungal activity of Origanum vulgare and Rosmarinus officinalis essential oil before and after inclusion in β-cyclodextrine. Int J Pharm Pharm Sci 7(5):5–8Google Scholar
  139. Paramera EI, Konteles SJ, Karathanos VT (2011) Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, β- cyclodextrin and modified starch. Food Chem 125(3):913–922.  https://doi.org/10.1016/j.foodchem.2010.09.071 CrossRefGoogle Scholar
  140. Partanen R, Ahro M, Hakala M, Kallio H, Forssell P (2002) Microencapsulation of caraway extract in β-cyclodextrin and modified starches. Eur Food Res Technol 214(3):242–247.  https://doi.org/10.1007/s00217-001-0446-1 CrossRefGoogle Scholar
  141. Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides ? Challenges and constraints. Trends Plant Sci 21(12):1000–1007.  https://doi.org/10.1016/j.tplants.2016.10.005 CrossRefGoogle Scholar
  142. Pein M, Preis M, Eckert C, Kiene FE (2014) Taste-masking assessment of solid oral dosage forms-a critical review. Int J Pharm 465(1–2):239–254.  https://doi.org/10.1016/j.ijpharm.2014.01.036 CrossRefGoogle Scholar
  143. Perricone M, Arace E, Corbo MR, Sinigaglia M, Bevilacqua A (2015) Bioactivity of essential oils: a review on their interaction with food components. Front Microbiol 6:76.  https://doi.org/10.3389/fmicb.2015.00076 CrossRefGoogle Scholar
  144. Pinho E, Grootveld M, Soares G, Henriques M (2014) Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr Polym 101:121–135.  https://doi.org/10.1016/j.carbpol.2013.08.078 CrossRefGoogle Scholar
  145. Ponce Cevallos PA, Buera MP, Elizalde BE (2010) Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: effect of interactions with water on complex stability. J Food Eng 99(1):70–75.  https://doi.org/10.1016/j.jfoodeng.2010.01.039 CrossRefGoogle Scholar
  146. Prakash B, Kedia A, Mishra PK, Dubey NK (2015) Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of Agri-food commodities – potentials and challenges. Food Control 47:381–391.  https://doi.org/10.1016/j.foodcont.2014.07.023 CrossRefGoogle Scholar
  147. Qi ZH, Hedges AR (1995) Use of cyclodextrins for flavours. In: Ho CT, Tan CT, Tong CH (eds) Flavour technology: physical chemistry, modification and process, ACS symposium series 610. American Chemical Society, Washington, DC, pp 231–243Google Scholar
  148. Radu CD, Parteni O, Ochiuz L (2016) Applications of cyclodextrins in medical textiles — review. J Control Release 224:146–157.  https://doi.org/10.1016/j.jconrel.2015.12.046 CrossRefGoogle Scholar
  149. Rakmai J, Cheirsilp B, Torrado-agrasar A, Simal Gandara J, Mejuto JC, Torrado-agrasar A (2017a) Encapsulation of yarrow essential oil in hydroxypropyl-beta-cyclodextrin: physiochemical characterization and evaluation of bio-efficacies. CyTA J Food 0:1–9.  https://doi.org/10.1080/19476337.2017.1286523 CrossRefGoogle Scholar
  150. Rakmai J, Cheirsilp B, Carlos J, Torrado-agrasar A (2017b) Physico-chemical characterization and evaluation of bio efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocoll 65:157–164.  https://doi.org/10.1016/j.foodhyd.2016.11.014 CrossRefGoogle Scholar
  151. Rakshit R (2011) Skin care textiles - a review. Man-Made Text India 39(3):81–85Google Scholar
  152. Rashed AA, Mohd Nawi MN, Sulaiman K (2017) Assessment of essential oil as a potential anti- obesity agent: a narrative review assessment of essential oil as a potential anti- obesity agent: a narrative review. J Essent Oil Res 29(1):1–10.  https://doi.org/10.1080/10412905.2016.1213668 CrossRefGoogle Scholar
  153. Raut JS, Karuppayil SM (2014) A status review on the medicinal properties of essential oils. Ind Crop Prod 62:250–264.  https://doi.org/10.1016/j.indcrop.2014.05.055 CrossRefGoogle Scholar
  154. Reineccius TA, Reineccius GA, Peppard TL (2002) Encapsulation of flavors using cyclodextrins: comparison of flavor retention in alpha, beta, and gamma types. J Food Sci 67(9):3271–3279.  https://doi.org/10.1111/j.1365-2621.2002.tb09577.x CrossRefGoogle Scholar
  155. Reineccius TA, Reineccius GA, Peppard TL (2004) Utilization of β-cyclodextrin for improved flavor retention in thermally processed foods. J Food Sci 69(1):58–62.  https://doi.org/10.1111/j.1365-2621.2004.tb17856.x CrossRefGoogle Scholar
  156. Ribeiro-Santos R, Andrade M, Sanches-Silva A (2017) Application of encapsulated essential oils as antimicrobial agents in food packaging. Curr Opin Food Sci 14:78–84.  https://doi.org/10.1016/j.cofs.2017.01.012 CrossRefGoogle Scholar
  157. Ruktanonchai UR, Srinuanchai W, Saesoo S, Sramala I, Puttipipatkhachorn S, Soottitantawat A (2011) Encapsulation of citral isomers in extracted lemongrass oil with cyclodextrins: molecular modeling and physicochemical characterizations. Biosci Biotechnol Biochem 75(12):2340–2345.  https://doi.org/10.1271/bbb.110523 CrossRefGoogle Scholar
  158. Sagiri SS, Anis A, Pal K (2016) Review on encapsulation of vegetable oils: strategies, preparation methods, and applications. Polym Plast Technol Eng 55(3):291–311.  https://doi.org/10.1080/03602559.2015.1050521 CrossRefGoogle Scholar
  159. Santos EH, Kamimura JA, Hill LE, Gomes CL (2015) Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. Food Sci Technol 60(1):583–592.  https://doi.org/10.1016/j.lwt.2014.08.046 CrossRefGoogle Scholar
  160. Sharifi-rad J, Sureda A, Tenore GC, Daglia M, Sharifi-rad M, Valussi M, Tundis R, Sharifi-Rad Loizzo MR, Ademiluyi AO, Sharifi-Rad R, Ayatollahi SA, Iriti M (2017) Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules 22(1):70.  https://doi.org/10.3390/molecules22010070 CrossRefGoogle Scholar
  161. Sherry M, Charcosset C, Fessi H, Greige-Gerges H (2013) Essential oils encapsulated in liposomes: a review. J Liposome Res 23(4):268–275.  https://doi.org/10.3109/08982104.2013.819888 CrossRefGoogle Scholar
  162. Stella VJ, He Q (2008) Cyclodextrins. Toxicol Pathol 36(1):30–42.  https://doi.org/10.1177/0192623307310945 CrossRefGoogle Scholar
  163. Suvarna V, Gujar P, Murahari M (2017) Complexation of phytochemicals with cyclodextrin derivatives – an insight. Biomed Pharmacother 88:1122–1144.  https://doi.org/10.1016/j.biopha.2017.01.157 CrossRefGoogle Scholar
  164. Szejtli J (2003) Cyclodextrins in the textile industry. Starch 55(5):191–196.  https://doi.org/10.1002/star.200390050 CrossRefGoogle Scholar
  165. Szejtli J (2004) Past, present and future of cyclodextrin research. Pure Appl Chem 76:1825–1844CrossRefGoogle Scholar
  166. Szejtli J, Szente L (2005) Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur J Pharm Biopharm 61(3):115–125.  https://doi.org/10.1016/j.ejpb.2005.05.006 CrossRefGoogle Scholar
  167. Szente L, Szejtli J (2004) Cyclodextrins as food ingredients. Trends Food Sci Technol 15(3–4):137–142.  https://doi.org/10.1016/j.tifs.2003.09.019 CrossRefGoogle Scholar
  168. Tamamoto LC, Schmidt SJ, Lee SY (2010) Sensory properties of ginseng solutions modified by masking agents. J Food Sci 75(7):341–347.  https://doi.org/10.1111/j.1750-3841.2010.01749.x CrossRefGoogle Scholar
  169. Tanemura I, Saito Y, Ueda H, Sato T (1998) Solubility method using static head-space gas chromatography for determination of the stability constants of fragrance materials with 2- hydroxypropyl-β-cyclodextrin. Chem Pharm Bull 46(3):540–541CrossRefGoogle Scholar
  170. Tao F, Hill LE, Peng Y, Gomes CL (2014) Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. Food Sci Technol 59(1):247–255.  https://doi.org/10.1016/j.lwt.2014.05.037 CrossRefGoogle Scholar
  171. Tian XN, Jiang ZT, Li R (2008) Inclusion interactions and molecular microcapsule of Salvia sclarea L. essential oil with β-cyclodextrin derivatives. Eur Food Res Technol 227(4):1001–1007.  https://doi.org/10.1007/s00217-007-0813-7 CrossRefGoogle Scholar
  172. Tisserand R, Young R (2014) Essential oil safety. A guide for health care professionals, 2nd edn. Churchill Livingstone, London, pp 23–38Google Scholar
  173. Del Toro-Sanchez CL, Ayala-Zavala JF, Machi L, Santacruz H, Villegas-Ochoa MA, Alvarez-Parrilla E, Gonzalez-Aguilar GA (2010) Controlled release of antifungal volatiles of thyme essential oil from β -cyclodextrin capsules. J Incl Phenom Macrocycl Chem 67:431–441.  https://doi.org/10.1007/s10847-009-9726-3 CrossRefGoogle Scholar
  174. Turek C, Stintzing FC (2013) Stability of essential oils: a review. Compr Rev Food Sci Food Saf 12(1):40–53.  https://doi.org/10.1111/1541-4337.12006 CrossRefGoogle Scholar
  175. Uyar T, Hacaloglu J, Besenbacher F (2009) Reactive & Functional Polymers Electrospun polystyrene fibers containing high temperature stable volatile fragrance / flavor facilitated by cyclodextrin inclusion complexes. React Funct Polym 69(3):145–150.  https://doi.org/10.1016/j.reactfunctpolym.2008.12.012 CrossRefGoogle Scholar
  176. Voncina B, Vivod V (2013) Cyclodextrins in textile finishing. In: Günay M (ed) Textile dyeing. InTech, Tijeka, Croatia., Chapter 3, p 53.  https://doi.org/10.5772/53777 CrossRefGoogle Scholar
  177. Waleczek KJ, Marques HMC, Hempel B, Schmidt PC (2003) Phase solubility studies of pure (− ) - α-bisabolol and camomile essential oil with β –cyclodextrin. Eur J Pharm Biopharm 55:247–251.  https://doi.org/10.1016/S0939-6411(02)00166-2 CrossRefGoogle Scholar
  178. Wang CX, Chen SL (2005) Fragrance-release property of β-cyclodextrin inclusion compounds and their application in aromatherapy. J Ind Text 34(3):157–166CrossRefGoogle Scholar
  179. Wang J, Cao Y, Sun B, Wang C (2011) Physicochemical and release characterisation of garlic oil-β-cyclodextrin inclusion complexes. Food Chem 127(4):1680–1685.  https://doi.org/10.1016/j.foodchem.2011.02.036 CrossRefGoogle Scholar
  180. Xu F, Yang Q, Wu L, Qi R, Wu Y, Li Y, Tang L, Gua D, Liu B (2017) Investigation of inclusion complex of patchouli alcohol with β–cyclodextrin. PLoS One 35:1–10.  https://doi.org/10.1371/journal.pone.0169578 CrossRefGoogle Scholar
  181. Yamamoto C, Neoh TL, Honbou H, Yoshii H, Furuta T (2012) Kinetic analysis and evaluation of controlled release of D-limonene encapsulated in spray-dried cyclodextrin powder under linearly ramped humidity. Dry Technol 30(11–12):1283–1291.  https://doi.org/10.1080/07373937.2012.681089 CrossRefGoogle Scholar
  182. Yang Z, Xiao Z, Ji H (2015) Solid inclusion complex of terpinen-4-ol/ β-cyclodextrin: kinetic release, mechanism and its antibacterial activity. Flavour Frag J 30(2):179–187.  https://doi.org/10.1002/ffj.3229 CrossRefGoogle Scholar
  183. Yang Z, Huang L, Ji H (2017) Host-guest complexes of estragole with β-cyclodextrin: an experimental and theoretical investigation. Flavour Frag J 32(2):102–111.  https://doi.org/10.1002/ffj.3358 CrossRefGoogle Scholar
  184. Yoshii H, Sakane A, Kawamura D, Neoh T, Kajiwara H, Furuta T (2007) Release kinetics of (−)-menthol from chewing gum. J Incl Phenom Macrocycl Chem 57(1–4):591–596.  https://doi.org/10.1007/s10847-006-9279-7 CrossRefGoogle Scholar
  185. Zeng Z, Fang Y, Jin H (2012) Side chain influencing the interaction between β-cyclodextrin and vanillin. Flavour Fragr J 27:378–385.  https://doi.org/10.1002/ffj.3115 CrossRefGoogle Scholar
  186. Zhao M, Wang H, Yang B, Tao H (2010) Identification of cyclodextrin inclusion complex of chlorogenic acid and its antimicrobial activity. Food Chem 120(4):1138–1142.  https://doi.org/10.1016/j.foodchem.2009.11.044 CrossRefGoogle Scholar
  187. Zhu G, Xiao Z, Zhu G, Niu Y (2016) Encapsulation of l-menthol in hydroxypropyl-β-cyclodextrin and release characteristics of the inclusion complex. Pol J Chem Technol 18(3):110–116.  https://doi.org/10.1515/pjct-2016-0056 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Miriana Kfoury
    • 1
    • 2
  • Lizette Auezova
    • 2
  • Hélène Greige-Gerges
    • 2
  • Sophie Fourmentin
    • 1
  1. 1.Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492)DunkerqueFrance
  2. 2.Bioactive Molecules Research Laboratory, Faculty of SciencesLebanese UniversityBeirutLebanon

Personalised recommendations