Central Nervous System

  • Abdelhamid H. Elgazzar
  • Ismet Sarikaya


Brain perfusion SPECT is used for assessment of brain death, cerebral ischemia, stroke, and trauma, lateralization and localization of epileptogenic foci in presurgical patients, early detection of Alzheimer’s disease (AD), and differentiating AD from other dementias.


  1. 1.
    Kapucu OL, Nobili F, Varrone A, Booij J, Vander Borght T, e t a (2009) EANM procedure guideline for brain perfusion SPECT using 99mTc-labelled radiopharmaceuticals, version 2. Eur J Nucl Med Mol Imaging 36:2093–2102CrossRefPubMedGoogle Scholar
  2. 2.
    Juni JE, Waxman AD, Devous MD Sr, Tikofsky RS, Ichise M et al (2009) Procedure guideline for brain perfusion SPECT using (99m)Tc radiopharmaceuticals 3.0. J Nucl Med Technol 37:191–195CrossRefPubMedGoogle Scholar
  3. 3.
    Véra P, Kaminska A, Cieuta C, Hollo A, Stiévenart JL et al (1999) Use of subtraction ictal SPECT co-registered to MRI for optimizing the localization of seizure foci in children. J Nucl Med 40:786–792PubMedGoogle Scholar
  4. 4.
    Packard AB, Roach PJ, Davis RT, Carmant L, Davis R et al (1996) Ictal and interictal technetium-99m-bicisate brain SPECT in children with refractory epilepsy. J Nucl Med 37:1101–1106PubMedGoogle Scholar
  5. 5.
    Cikrit DF, Dalsing MC, Harting PS, Burt RW, Lalka SG et al (1997) Cerebral vascular reactivity assessed with acetazolamide single photon emission computer tomography scans before and after carotid endarterectomy. Am J Surg 174:193–197CrossRefPubMedGoogle Scholar
  6. 6.
    Society of Nuclear Medicine Procedure Guideline for FDG PET Brain Imaging Version 1.0, approved February 8, 2009Google Scholar
  7. 7.
    Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F et al (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36:2103–2110CrossRefPubMedGoogle Scholar
  8. 8.
    Stanescu L, Ishak GE, Khanna PC, Biyyam DR, Shaw DW et al (2013) FDG PET of the brain in pediatric patients: imaging spectrum with MR imaging correlation. Radiographics 33:1279–1303CrossRefPubMedGoogle Scholar
  9. 9.
    Chugani HT, Phelps ME (1991) Imaging human brain development with positron emission tomography. J Nucl Med 32:23–26PubMedGoogle Scholar
  10. 10.
    Kennedy C, Sokoloff L (1957) An adaptation of the nitrous oxide method to the study of the cerebral circulation in children: normal values for cerebral blood flow and cerebral metabolic rate in childhood. J Clin Invest 36:1130–1137CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Herholz K, Salmon E, Perani D, Baron JC, Holthoff V et al (2002) Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. NeuroImage 17:302–316CrossRefPubMedGoogle Scholar
  12. 12.
    Loessner A, Alavi A, Lewandrowski KU, Mozley D, Souder E et al (1995) Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age. J Nucl Med 36:1141–1149PubMedGoogle Scholar
  13. 13.
    Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Mandel F et al (1996) The metabolic topography of normal aging. J Cereb Blood Flow Metab 16:385–398CrossRefPubMedGoogle Scholar
  14. 14.
    Garibotto V, Heinzer S, Vulliemoz S, Guignard R, Wissmeyer M et al (2013) Clinical applications of hybrid PET/MRI in neuroimaging. Clin Nucl Med 38:e13–e18CrossRefPubMedGoogle Scholar
  15. 15.
    Abdel-Dayem HM, Elgazzar AH (1989) The determination of death and the changing role of medical imaging. Radiographics 9:650–651CrossRefPubMedGoogle Scholar
  16. 16.
    Donohoe KJ, Agrawal G, Frey KA, Gerbaudo VH, Mariani G et al (2012) SNM practice guideline for brain death scintigraphy 2.0. J Nucl Med Technol 40:198–203CrossRefPubMedGoogle Scholar
  17. 17.
    Al-Shammri S, Al-Feeli M (2004) Confirmation of brain death using brain radionuclide perfusion imaging technique. Med Princ Pract 13:267–272CrossRefPubMedGoogle Scholar
  18. 18.
    Momose T, Nishikawa J, Watanabe T, Ohtake T, Sasaki Y et al (1992) Clinical application of 18F-FDG-PET in patients with brain death. Kaku Igaku 29:1139–1142PubMedGoogle Scholar
  19. 19.
    Booij J (2008) [123I]FP-CIT SPECT: potential effects of drugs. Eur J Nucl Med Mol Imaging 35:424–438CrossRefPubMedGoogle Scholar
  20. 20.
    Djang DS, Janssen MJ, Bohnen N, Booij J, Henderson TA et al (2012) SNM practice guideline for dopamine transporter imaging with 123I-ioflupane SPECT 1.0. J Nucl Med 53:154–163CrossRefPubMedGoogle Scholar
  21. 21.
    Jennings DL, Seibyl JP, Oakes D, Eberly S, Murphy J et al (2004) (123I) beta-CIT and single-photon emission computed tomographic imaging vs clinical evaluation in parkinsonian syndrome: unmasking an early diagnosis. Arch Neurol 61:1224–1229CrossRefPubMedGoogle Scholar
  22. 22.
    McKusick KA, Malmud LS, Kordela PA, Wagner HN Jr (1973) Radionuclide cisternography: normal values for nasal secretion of intrathecally injected 111In-DTPA. J Nucl Med 14:933–934PubMedGoogle Scholar
  23. 23.
    Grantham VV, Blakley B, Winn J (2006) Technical review and considerations for a cerebrospinal fluid leakage study. J Nucl Med Technol 34:48–51PubMedGoogle Scholar
  24. 24.
    Nuclear Pharmacy, College of Pharmacy, University of Arkansas for Medical Sciences. List of drug interactions with radiopharmaceuticals. Accessed 5 Jan 2006
  25. 25.
    Mettler FA Jr, Guiberteau MJ (1998) Cerebrovascular system. In: Essentials of nuclear medicine imaging, 4th edn. W.B. Saunders Company, p 101Google Scholar
  26. 26.
    MacDonald A, Burrell S (2009) Infrequently performed studies in nuclear medicine: part 2. J Nucl Med Technol 37:1–13CrossRefPubMedGoogle Scholar
  27. 27.
    Ashraf R, Sostre S (1995) Differing scintigraphic patterns of lumboperitoneal shunt dysfunction in patients with normal pressure hydrocephalus and pseudotumor cerebri. Clin Nucl Med 20:140–146CrossRefPubMedGoogle Scholar
  28. 28.
    Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S et al (1996) Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 334:752–758CrossRefPubMedGoogle Scholar
  29. 29.
    Small GW, Ercoli LM, Silverman DH, Huang SC, Komo S et al (2000) Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 97:6037–6042CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mosconi L, Rinne JO, Tsui WH, Murray J, Li Y et al (2013) Amyloid and metabolic positron emission tomography imaging of cognitively normal adults with Alzheimer’s parents. Neurobiol Aging 34:22–34CrossRefPubMedGoogle Scholar
  31. 31.
    Arnaiz E, Jelic V, Almkvist O, Wahlund LO, Winblad B et al (2001) Impaired cerebral glucose metabolism and cognitive functioning predict deterioration in mild cognitive impairment. Neuroreport 12:851–855CrossRefPubMedGoogle Scholar
  32. 32.
    Yuan Y, Gu ZX, Wei WS (2009) Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: a meta-analysis. Am J Neuroradiol 30:404–410CrossRefPubMedGoogle Scholar
  33. 33.
    Mountz JM, San Pedro EC (2015) Nuclear medicine imaging of CNS: basis of clinical applications. In: Elgazzar AH (ed) The pathophysiologic basis of nuclear medicine, 3rd edn. Springer, p 634Google Scholar
  34. 34.
    Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319CrossRefPubMedGoogle Scholar
  35. 35.
    Wong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V et al (2010) In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18). J Nucl Med 51:913–920CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Villemagne VL, Ong K, Mulligan RS, Holl G, Pejoska S et al (2011) Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med 52:1210–1217CrossRefPubMedGoogle Scholar
  37. 37.
    Fodero-Tavoletti MT, Cappai R, McLean CA, Pike KE, Adlard PA et al (2009) Amyloid imaging in Alzheimer’s disease and other dementias. Brain Imaging Behav 3:246–261CrossRefPubMedGoogle Scholar
  38. 38.
    Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE et al (2010) Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging 31:1275–1283CrossRefPubMedGoogle Scholar
  39. 39.
    Cairns NJ, Ikonomovic MD, Benzinger T, Storandt M, Fagan AM et al (2009) Absence of Pittsburgh compound B detection of cerebral amyloid beta in a patient with clinical, cognitive, and cerebrospinal fluid markers of Alzheimer disease: a case report. Arch Neurol 66:1557–1562CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F et al (2013) Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis 34:457–468PubMedCrossRefGoogle Scholar
  41. 41.
    Eisenmenger LB, Huo EJ, Hoffman JM, Minoshima S, Matesan MC et al (2016) Advances in PET imaging of degenerative, cerebrovascular, and traumatic causes of dementia. Semin Nucl Med 46(1):57–87CrossRefPubMedGoogle Scholar
  42. 42.
    Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH et al (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia 51:676–685CrossRefPubMedGoogle Scholar
  43. 43.
    Devous MD Sr, Thisted RA, Morgan GF, Leroy RF, Rowe CC (1988) SPECT brain imaging in epilepsy: a meta-analysis. J Nucl Med 39:285–293Google Scholar
  44. 44.
    Spencer SS (1994) The relative contributions of MRI SPECT and PET imaging in epilepsy. Epilepsia 35:S72–S89CrossRefPubMedGoogle Scholar
  45. 45.
    Won HJ, Chang KH, Cheon JE, Kim HD, Lee DS et al (1999) Comparison of MR imaging with PET and ictal SPECT in 118 patients with intractable epilepsy. AJNR Am J Neuroradiol 20:593–599PubMedGoogle Scholar
  46. 46.
    Mountz JM, San Pedro EC (2015) Nuclear medicine imaging of CNS: basis of clinical applications. In: Elgazzar AH (ed) The pathophysiologic basis of nuclear medicine, 3rd edn. Springer, p 639Google Scholar
  47. 47.
    Savic I, Ingvar M, Stone-Elander S (1993) Comparison of [11C]flumazenil and [18F]FDG as PET markers of epileptic foci. J Neurol Neurosurg Psychiatry 56:615–621CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Savic I, Thorell JO, Roland P (1995) [11C]flumazenil positron emission tomography visualizes frontal epileptogenic regions. Epilepsia 36:1225–1232CrossRefPubMedGoogle Scholar
  49. 49.
    Szelies B, Weber-Luxenburger G, Pawlik G, Kessler J, Holthoff V et al (1996) MRI-guided flumazenil- and FDG-PET in temporal lobe epilepsy. NeuroImage 3:109–118CrossRefPubMedGoogle Scholar
  50. 50.
    Vivash L, Gregoire MC, Lau EW, Ware RE, Binns D et al (2013) 18F-flumazenil: a γ-aminobutyric acid A-specific PET radiotracer for the localization of drug-resistant temporal lobe epilepsy. J Nucl Med 54:1270–1277CrossRefPubMedGoogle Scholar
  51. 51.
    Guidelines for the diagnosis of brain death. Canadian Neurocritical Care Group. Can J Neurol Sci. 1999;26:64–66Google Scholar
  52. 52.
    Lee VW, Hauck RM, Morrison MC, Peng TT, Fischer E et al (1987) Scintigraphic evaluation of brain death: significance of sagittal sinus visualization. J Nucl Med 28:1279–1283PubMedGoogle Scholar
  53. 53.
    Appelt EA, Song WS, Phillips WT, Metter DF, Salman UA et al (2008) The “hot nose” sign on brain death scintigraphy: where does the flow really go? Clin Nucl Med 33:55–57CrossRefPubMedGoogle Scholar
  54. 54.
    Meyer MA (1996) Evaluating brain death with positron emission tomography: case report on dynamic imaging of 18F-fluorodeoxyglucose activity after intravenous bolus injection. J Neuroimaging 6:117–119CrossRefPubMedGoogle Scholar
  55. 55.
    Derdeyn CP, Yundt KD, Videen TO, Carpenter DA, Grubb RL Jr et al (1998) Increased oxygen extraction fraction is associated with prior ischemic events in patients with carotid occlusion. Stroke 29:754–758CrossRefPubMedGoogle Scholar
  56. 56.
    Eicker SO, Turowski B, Heiroth HJ, Steiger HJ, Hänggi D (2011) A comparative study of perfusion CT and 99m Tc-HMPAO SPECT measurement to assess cerebrovascular reserve capacity in patients with internal carotid artery occlusion. Eur J Med Res 16:484–490CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Knapp WH, von Kummer R, Kübler W (1986) Imaging of cerebral blood flow-to-volume distribution using SPECT. J Nucl Med 27:465–470PubMedGoogle Scholar
  58. 58.
    Egge A, Sjøholm H, Waterloo K, Solberg T, Ingebrigtsen T et al (2005) Serial single-photon emission computed tomographic and transcranial doppler measurements for evaluation of vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery 57:237–242CrossRefPubMedGoogle Scholar
  59. 59.
    Batjer HH, Devous MD Sr (1992) The use of acetazolamide-enhanced regional cerebral blood flow measurement to predict risk to arteriovenous malformation patients. Neurosurgery 31:213–217CrossRefPubMedGoogle Scholar
  60. 60.
    De Roo M, Mortelmans L, Devos P, Verbruggen A, Wilms G et al (1989) Clinical experience with Tc-99m HM-PAO high resolution SPECT of the brain in patients with cerebrovascular accidents. Eur J Nucl Med 15:9–15CrossRefPubMedGoogle Scholar
  61. 61.
    Burn DJ, Mark MH, Playford ED, Maraganore DM, Zimmerman TR Jr et al (1992) Parkinson’s disease in twins studied with 18F-dopa and positron emission tomography. Neurology 42:1894–1900CrossRefPubMedGoogle Scholar
  62. 62.
    Piccini P, Morrish PK, Turjanski N, Sawle GV, Burn DJ et al (1997) Dopaminergic function in familial Parkinson’s disease: a clinical and 18F-dopapositron emission tomography study. Ann Neurol 41:222–229CrossRefPubMedGoogle Scholar
  63. 63.
    Dentresangle C, Veyre L, Le Bars D, Pierre C, Lavenne F et al (1999) Striatal D2 dopamine receptor status in Parkinson’s disease: an [18F]dopa and [11C]raclopride PET study. Mov Disord 14:1025–1030CrossRefPubMedGoogle Scholar
  64. 64.
    Rinne JO, Laihinen A, Rinne UK, Någren K, Bergman J et al (1993) PET study on striatal dopamine D2 receptor changes during the progression of early Parkinson’s disease. Mov Disord 8:134–138CrossRefGoogle Scholar
  65. 65.
    Kwon KY, Choi CG, Kim JS, Lee MC, Chung SJ (2007) Comparison of brain MRI and 18F-FDG PET in the differential diagnosis of multiple system atrophy from Parkinson’s disease. Mov Disord 22:2352–2358CrossRefPubMedGoogle Scholar
  66. 66.
    Juh R, Pae CU, Lee CU, Yang D, Chung Y et al (2005) Voxel based comparison of glucose metabolism in the differential diagnosis of the multiple system atrophy using statistical parametric mapping. Neurosci Res 52:211–219CrossRefPubMedGoogle Scholar
  67. 67.
    Lehericy S, Meunier S, Garnero L, Vidailhet M (2003) Dystonia: contributions of functional imaging and magnetoencephalography. Rev Neurol 159:874–879PubMedGoogle Scholar
  68. 68.
    Lehéricy S, Tijssen MAJ, Vidailhet M, Kaji R, Meunier S (2013) The anatomical basis of dystonia: current view using neuroimaging. Mov Disord 28:944–957CrossRefPubMedGoogle Scholar
  69. 69.
    Sung DH, Choi JY, Kim DH, Kim ES, Son YI et al (2007) Localization of dystonic muscles with 18F-FDG PET/CT in idiopathic cervical dystonia. J Nucl Med 48:1790–1795CrossRefPubMedGoogle Scholar
  70. 70.
    Pourfar M, Feigin A, Tang CC, Carbon-Correll M, Bussa M et al (2011) Abnormal metabolic brain networks in Tourette syndrome. Neurology 76:944–952CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Lerner A, Bagic A, Boudreau EA, Hanakawa T, Pagan F et al (2007) Neuroimaging of neuronal circuits involved in tic generation in patients with Tourette syndrome. Neurology 68:1979–1987CrossRefPubMedGoogle Scholar
  72. 72.
    Patten DH, Benson DF (1968) Diagnosis of normal-pressure hydrocephalus by RISA cisternography. J Nucl Med 9:457–461PubMedGoogle Scholar
  73. 73.
    James AE Jr, DeLand FH, Hodges FJ 3rd, Wagner HN Jr (1970) Normal-pressure hydrocephalus. Role of cisternography in diagnosis. JAMA 213:1615–1622CrossRefPubMedGoogle Scholar
  74. 74.
    Thut DP, Kreychman A, Obando JA (2014) 111In-DTPA cisternography with SPECT/CT for the evaluation of normal pressure hydrocephalus. J Nucl Med Technol 42:70–74CrossRefPubMedGoogle Scholar
  75. 75.
    Uvebrant P, Sixt R, Bjure J, Roos A (1992) Evaluation of cerebrospinal fluid shunt function in hydrocephalic children using 99mTc-DTPA. Childs Nerv Syst 8:76–80CrossRefPubMedGoogle Scholar
  76. 76.
    Ouellette D, Lynch T, Bruder E, Everson E, Joubert G et al (2009) Additive value of nuclear medicine shuntograms to computed tomography for suspected cerebrospinal fluid shunt obstruction in the pediatric emergency department. Pediatr Emerg Care 25:827–830CrossRefPubMedGoogle Scholar
  77. 77.
    Galynker II, Cai J, Ongseng F, Finestone H, Dutta E et al (1998) Hypofrontality and negative symptoms in major depressive disorder. J Nucl Med 39:608–612PubMedGoogle Scholar
  78. 78.
    Newberg AB, Alavi A (2010) Role of PET in the investigation of neuropsychiatric disorders. PET Clin 5:223–242CrossRefPubMedGoogle Scholar
  79. 79.
    Volkow ND, Wolf AP, Van Gelder P, Brodie JD, Overall JE et al (1987) Phenomenological correlates of metabolic activity in 18 patients with chronic schizophrenia. Am J Psychiatry 144:151–158CrossRefPubMedGoogle Scholar
  80. 80.
    Wu JC, Buchsbaum MS, Hershey TG, Hazlett E, Sicotte N et al (1991) PET in generalized anxiety disorder. Biol Psychiatry 29:1181–1199CrossRefPubMedGoogle Scholar
  81. 81.
    Volkow ND, Hitzemann R, Wolf AP, Logan J, Fowler JS et al (1990) Acute effects of ethanol on regional brain glucose metabolism and transport. Psychiatry Res 35:39–48CrossRefPubMedGoogle Scholar
  82. 82.
    Baxter L, Schwartz J, Mazziotta J, Phelps ME, Pahl JJ et al (1988) Cerebral glucose metabolic rates in nondepressed patients with obsessive-compulsive disorder. Am J Psychiatry 145:1560–1563CrossRefPubMedGoogle Scholar
  83. 83.
    Swedo SE, Schapiro MB, Grady CL, Cheslow DL, Leonard HL et al (1989) Cerebral glucose metabolism in childhood-onset obsessive compulsive disorder. Arch Gen Psychiatry 46:518–523CrossRefPubMedGoogle Scholar
  84. 84.
    Mountz JM, Tolbert LC, Lill DW, Katholi CR, Liu HG (1995) Functional deficits in autistic disorder: characterization by technetium-99m-HMPAO and SPECT. J Nucl Med 36:1156–1162PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Abdelhamid H. Elgazzar
    • 1
  • Ismet Sarikaya
    • 1
  1. 1.Department of Nuclear MedicineKuwait UniversitySafatKuwait

Personalised recommendations