Skeletal System

  • Abdelhamid H. Elgazzar
  • Ismet Sarikaya


Bone scan is used in the diagnosis and follow-up of various benign and malignant bone diseases.


  1. 1.
    Al-Awadi I, Elgazzar AH (2009) Scintigraphic patterns of growth plates: age related normal variations. JNM 50(Suppl 2):1391Google Scholar
  2. 2.
    Han JK, Shih WJ, Strpp V, Magoun S (1999) Normal variants of a photon-deficient area in the lower sternum demonstrated by bone SPECT. Clin Nucl Med 24:248–251PubMedCrossRefGoogle Scholar
  3. 3.
    Elgazzar AH (2017) Diagnosis of traumatic disorders. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, Berlin, p 163CrossRefGoogle Scholar
  4. 4.
    Harcke HT, Mandell GA (1993) Scintigraphic evaluation of the growth plate. Semin Nucl Med 23:266–273PubMedCrossRefGoogle Scholar
  5. 5.
    Sarikaya I, Sarikaya A, Holder LE (2001) The role of single photon emission computed tomography in bone imaging. Semin Nucl Med 31:3–16PubMedCrossRefGoogle Scholar
  6. 6.
    Scharf S (2009) SPECT/CT imaging in general orthopedic practice. Semin Nucl Med 39:293–307PubMedCrossRefGoogle Scholar
  7. 7.
    Sarikaya I, Elgazzar AH, Sarikaya A, Alfeeli M (2017) Normal bone and soft tissue distribution of fluorine-18-sodium fluoride and artifacts on 18F-NaF PET/CT bone scan: a pictorial review. Nucl Med Commun 38:810–819PubMedCrossRefGoogle Scholar
  8. 8.
    Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J et al (2010) SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med 51:1813–1820PubMedCrossRefGoogle Scholar
  9. 9.
    Beheshti M, Mottaghy FM, Payche F, Behrendt FF, Van den Wyngaert T et al (2015) (18)F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging 42:1767–1777PubMedCrossRefGoogle Scholar
  10. 10.
    Hawkins RA, Choi Y, Huang SC, Hoh CK, Dahlbom M et al (1992) Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med 33:633–642PubMedGoogle Scholar
  11. 11.
    Sabbah N, Jackson T, Mosci C, Jamali M, Minamimoto R et al (2015) 18F-sodium fluoride PET/CT in oncology: an atlas of SUVs. Clin Nucl Med 40:e228–e231PubMedCrossRefGoogle Scholar
  12. 12.
    Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H et al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47:287–297PubMedPubMedCentralGoogle Scholar
  13. 13.
    Schirrmeister H, Guhlmann A, Kotzerke J, Santjohanser C, Kuhn T et al (1999) Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol 17:2381–2389PubMedCrossRefGoogle Scholar
  14. 14.
    Genant HK, Cooper C, Poor G, Reid I, Ehrlich G et al (1999) Interim report and recommendations of the World Health Organization Task-Force for Osteoporosis. Osteoporos Int 10:259–264PubMedCrossRefGoogle Scholar
  15. 15.
    Njeh CF, Fuerst T, Hans D, Blake GM, Genant HK (1999) Radiation exposure in bone mineral density assessment. Appl Radiat Isot 50:215–236PubMedCrossRefGoogle Scholar
  16. 16.
    Lewiecki EM, Compston JE, Miller PD, Adachi JD, Adams JE et al (2011) FRAX(®) Position Development Conference Members. FRAX(®) bone mineral density task force of the 2010 joint international society for clinical densitometry & international osteoporosis foundation position development conference. J Clin Densitom 14:223–225PubMedCrossRefGoogle Scholar
  17. 17.
    Helms CA, Hattner RS, Vogler JB 3rd (1984) Osteoid osteoma: radionuclide diagnosis. Radiology 151:779–784PubMedCrossRefGoogle Scholar
  18. 18.
    Jeong YJ, Sohn MH, Lim ST, Kim DW, Jeong HJ et al (2011) Osteoblastoma in the nasal cavity: F-18 FDG PET/CT and Tc-99m MDP 3-phase bone scan findings with pathologic correlation. Clin Nucl Med 36:214–217PubMedCrossRefGoogle Scholar
  19. 19.
    Van Nostrand D, Madewell JE, McNiesh LM, Kyle RW, Sweet D (1986) Radionuclide bone scanning in giant cell tumor. J Nucl Med 27:329–338PubMedGoogle Scholar
  20. 20.
    Veluvolu P, Collier BD, Isitman AT (1984) Scintigraphic skeletal doughnut sign due to giant cell tumor of the fibula. Clin Nucl Med 9:631–634PubMedCrossRefGoogle Scholar
  21. 21.
    D’Angelo L, Massimi L, Narducci A, Di Rocco C (2009) Ollier disease. Childs Nerv Syst 25:647–653PubMedCrossRefGoogle Scholar
  22. 22.
    Elgazzar AH (2017) Neoplastic bone diseases. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 218CrossRefGoogle Scholar
  23. 23.
    Elgazzar AH (2017) Neoplastic bone diseases. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 238CrossRefGoogle Scholar
  24. 24.
    Edeling CJ (1988) Bone scintigraphy in hereditary multiple exostoses. Eur J Nucl Med 14:207–208PubMedCrossRefGoogle Scholar
  25. 25.
    Reader DW, Pozderac RV (2001) Vertebral hemangioma presenting as a cold defect on bone scintigraphy. Clin Nucl Med 26:868–869PubMedCrossRefGoogle Scholar
  26. 26.
    Halkar RK, Motawy MM, Hebbar HG, Jahan MS (1994) Vertebral body hemangioma showing increased uptake of Tc-99m MDP and decreased Tc-99m labeled red blood cells. Clin Nucl Med 19:827–828PubMedCrossRefGoogle Scholar
  27. 27.
    Dominguez ML, Rayo JI, Serrano J, Sanchez R, Infante JR, Garcia L, Duran C (2011) Vertebral hemangioma: “cold” vertebrae on bone scintigraphy and fluordeoxy-glucose positron emission tomography-computed tomography. Indian J Nucl Med 26:49–51PubMedPubMedCentralGoogle Scholar
  28. 28.
    Hudson TM (1984) Scintigraphy of aneurysmal bone cysts. AJR Am J Roentgenol 142:761–765PubMedCrossRefGoogle Scholar
  29. 29.
    Elgazzar AH (2017) Diagnosis of bone and joint diseases by nuclear medicine techniques. In: Elgazzar AH (ed) Orthopedic nuclear medicine. SpringerCrossRefGoogle Scholar
  30. 30.
    Wang K, Allen L, Fung E, Chan CC, Chan JC, Griffith JF (2005) Bone scintigraphy in common tumors with osteolytic components. Clin Nucl Med 30:655–671PubMedCrossRefGoogle Scholar
  31. 31.
    Velchik MG, Wegener W (1989) Osteogenic sarcoma with pulmonary metastasis visualized by bone imaging. Clin Nucl Med 14:662–665PubMedCrossRefGoogle Scholar
  32. 32.
    Franzius F, Bielack S, Flege S, Sciuk J, Heribert Jürgens H, Schober O (2002) Prognostic significance of 18F-FDG and 99Tc-mehylene diphosphonate uptake in primary osteosarcoma. J Nucl Med 43:1012–1017PubMedGoogle Scholar
  33. 33.
    Lyall HA, Constant CR, Wraight EP (1993) Case report: Ewing’s sarcoma in distal tibial metaphysis mimicking osteomyelitis. Clin Radiol 48:140–142PubMedCrossRefGoogle Scholar
  34. 34.
    Hung GU, Tan TS, Kao CH, Wang SJ (2000) Multiple skeletal metastases of Ewing’s sarcoma demonstrated on FDG-PET and compared with bone and gallium scans. Kaohsiung J Med Sci 16:315–318PubMedGoogle Scholar
  35. 35.
    Bar-Sever Z, Cohen IJ, Connolly LP, Horev G, Perri T, Treves T, Hardoff R (2000) Tc-99m MIBI to evaluate children with Ewing’s sarcoma. Clin Nucl Med 25:410–413PubMedCrossRefGoogle Scholar
  36. 36.
    Coleman RE, Mashiter G, Whitaker KB, Moss DW, Rubens RD (1988) Bone scan flare predicts successful systemic therapy for bone metastases. J Nucl Med 29:1354–1359PubMedGoogle Scholar
  37. 37.
    Wade AA, Scott JA, Kuter I, Fischman AJ (2006) Flare response in 18F-fluoride ion PET bone scanning. AJR Am J Rontgenol 186:1783–1786CrossRefGoogle Scholar
  38. 38.
    Krupitskaya Y, Eslamy HK, Nguyen DD, Kumar A, Wakelee HA (2009) Osteoblastic bone flare on F18-FDG PET in non-small cell lung cancer (NSCLC) patients receiving bevacizumab in addition to standard chemotherapy. J Thorac Oncol 4:429–431PubMedCrossRefGoogle Scholar
  39. 39.
    Chakraborty D, Bhattacharya A, Mete UK, Mittal BR (2013) Comparison of 18F-fluoride PET/CT and 99mTc-MDP bone scan in the detection of skeletal metastases in urinary bladder carcinoma. Clin Nucl Med 38:616–621PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Tuson GE, Hoffman EB, Mann MD (1994) Isotope bone scanning for acute osteomyelitis and septic arthritis in children. J Bone Joint Surg (Br) 76B:306–310CrossRefGoogle Scholar
  41. 41.
    Elgazzar AH (2017) Diagnosis of inflammatory bone diseases. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 57CrossRefGoogle Scholar
  42. 42.
    Namey TC, Halla JT (1978) Radiographic and nucleographic techniques. Clin Rheum Dis 4:95–132Google Scholar
  43. 43.
    Alazraki N, Fierer J, Resnick D (1985) Chronic osteomyelitis: monitoring by 99mTc phosphate and 67Ga citrate imaging. AJR Am J Roentgenol 145:767–771PubMedCrossRefGoogle Scholar
  44. 44.
    Tumeh SS, Aliabadi P, Weissman BN, McNeil BJ (1986) Chronic osteomyelitis: bone and gallium scan patterns associated with active disease. Radiology 158:685–688PubMedCrossRefGoogle Scholar
  45. 45.
    Guhlmann A, Brecht-Krauss D, Suger G, Glatting G, Kotzerke J et al (1998) Chronic osteomyelitis: detection with FDG PET and correlation with histopathologic findings. Radiology 206:749–754PubMedCrossRefGoogle Scholar
  46. 46.
    Koort JK, Mäkinen TJ, Knuuti J, Jalava J, Aro HT (2004) Comparative 18F-FDG PET of experimental Staphylococcus aureus osteomyelitis and normal bone healing. J Nucl Med 45:1406–1411PubMedGoogle Scholar
  47. 47.
    Resnick D, Niwayama G (1995) Osteomyelitis, septic arthritis and soft tissue infection: mechanisms and situations. In: Resnick D (ed) Diagnosis of bone and joint disorders, 3rd edn. WB Saunders, Philadelphia, p 2325Google Scholar
  48. 48.
    Israel O, Gips S, Jerushalmi J, Frenkel A, Front D (1987) Osteomyelitis and soft-tissue infection: differential diagnosis with 24 hour/4 hour ratio of Tc-99m MDP uptake. Radiology 163:725–726PubMedCrossRefGoogle Scholar
  49. 49.
    Palestro CJ, Love C (2009) Nuclear medicine and diabetic foot infections. Semin Nucl Med 39:52–65PubMedCrossRefGoogle Scholar
  50. 50.
    Heiba S, Kolker D, Ong L, Sharma S, Travis A et al (2013) Dual-isotope SPECT/CT impact on hospitalized patients with suspected diabetic foot infection: saving limbs, lives, and resources. Nucl Med Commun 34:877e84Google Scholar
  51. 51.
    Filippi L, Uccioli L, Giurato L, Schillaci O (2009) Diabetic foot infection: usefulness of SPECT/CT for 99mTc-HMPAO-labeled leukocyte imaging. J Nucl Med 50:1042–1046PubMedCrossRefGoogle Scholar
  52. 52.
    Palestro CJ, Love C, Tronco GG, Tomas MB, Rini JN (2006) Combined labeled leukocyte and technetium 99m sulfur colloid bone marrow imaging for diagnosing musculoskeletal infection. Radiographics 26:859–870PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Palestro CJ, Mehta HH, Patel M, Freeman SJ, Harrington WN et al (1998) Marrow versus infection in the Charcot joint: indium-111 leukocyte and technetium-99m sulfur colloid scintigraphy. J Nucl Med 39:346–350PubMedGoogle Scholar
  54. 54.
    Harwood SJ, Valdivia S, Hung GL, Quenzer RW (1999) Use of Sulesomab, a radiolabeled antibody fragment, to detect osteomyelitis in diabetic patients with foot ulcers by leukoscintigraphy. Clin Infect Dis 28:1200–1205PubMedCrossRefGoogle Scholar
  55. 55.
    Love C, Palestro CJ (2016) Nuclear medicine imaging of bone infections. Clin Radiol 71:632–646PubMedCrossRefGoogle Scholar
  56. 56.
    Elgazzar AH (2017) Diagnosis of inflammatory bone diseases. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, pp 46–47CrossRefGoogle Scholar
  57. 57.
    Modic MT, Feiglin DH, Piraino DW, Boumphrey F, Weinstein MA et al (1985) Vertebral osteomyelitis: assessment using MR. Radiology 157:157–166PubMedCrossRefGoogle Scholar
  58. 58.
    Love C, Patel M, Lonner BS, Tomas MB, Palestro CJ (2000) Diagnosing spinal osteomyelitis: a comparison of bone and Ga-67 scintigraphy and magnetic resonance imaging. Clin Nucl Med 25:963–977PubMedCrossRefGoogle Scholar
  59. 59.
    Palestro CJ, Love C (2007) Radionuclide imaging of musculoskeletal infection: conventional agents. Semin Musculoskelet Radiol 11:335–352PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Schlaeffer F, Mikolich DJ, Mates SM (1987) Technetium Tc 99m diphosphonate bone scan. False-normal findings in elderly patients with hematogenous vertebral osteomyelitis. Arch Intern Med 147:2024–2026PubMedCrossRefGoogle Scholar
  61. 61.
    Bruschwein DA, Brown ML (1980) Gallium scintigraphy in the evaluation of disk-space infections: concise communication. J Nucl Med 21:925–927PubMedGoogle Scholar
  62. 62.
    Hadjipavlou AG, Cesani-Vazquez F, Villaneuva-Meyer J, Mader JT, Necessary JT et al (1998) The effectiveness of gallium citrate Ga 67 radionuclide imaging in vertebral osteomyelitis revisited. Am J Orthop 27:179–183PubMedGoogle Scholar
  63. 63.
    de Winter F, Gemmel F, Van de Wiele C, Poffijn B, Uyttendaele D et al (2003) 18-fluorine fluorodeoxyglucose positron emission tomography for the diagnosis of infection in the postoperative spine. Spine 28:1314–1319PubMedGoogle Scholar
  64. 64.
    Gratz S, Dorner J, Fischer U, Behr TM, Behe M et al (2002) F-18-FDG hybrid PET inpatients with suspected spondylitis. Eur J Nucl Med Mol Imaging 29:516–524PubMedCrossRefGoogle Scholar
  65. 65.
    Whalen JL, Brown ML, McLeod R, Fitzgerald RH Jr (1991) Limitations of indium leukocyte imaging for the diagnosis of spine infections. Spine 16:193–197PubMedGoogle Scholar
  66. 66.
    Allainmat L, Aubault M, Noël V, Baulieu F, Laulan J, Eder V (2013) Use of hybrid SPECT/CT for diagnosis of radiographic occult fractures of the wrist. Clin Nucl Med 38:e246–e251PubMedCrossRefGoogle Scholar
  67. 67.
    O’Reilly RJ, Cook DJ, Gaffney RD, Angel KR, Paterson DC (1981) Can serial scintigraphic studies detect delayed fracture union in man? Clin Orthop Relat Res 160:227–232Google Scholar
  68. 68.
    Elgazzar AH (2017) Diagnosis of traumatic disorders. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 152CrossRefGoogle Scholar
  69. 69.
    Hendler A, Hershkop M (1998) When to use bone scintigraphy. It can reveal things other studies cannot. Postgrad Med 104:59–66CrossRefGoogle Scholar
  70. 70.
    Elgazzar AH (2017) Diagnosis of metabolic, endocrine and congenital bone disease. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 111CrossRefGoogle Scholar
  71. 71.
    Wilcox JR Jr, Moniot AL, Green JP (1977) Bone scanning in the evaluation of exercise-related stress injuries. Radiology 123:699–703PubMedCrossRefGoogle Scholar
  72. 72.
    Elgazzar AH (2017) Diagnosis of traumatic disorders. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 171CrossRefGoogle Scholar
  73. 73.
    Holder LE, Michael RH (1984) The specific scintigraphic pattern of “shin splints in the lower leg”: concise communication. J Nucl Med 25:865–869PubMedGoogle Scholar
  74. 74.
    Elgazzar AH (2017) Diagnosis of traumatic disorders. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 170CrossRefGoogle Scholar
  75. 75.
    Rupani HD, Holder LE, Espinola DA, Engin SI (1985) Three-phase radionuclide bone imaging in sports medicine. Radiology 156:187–196PubMedCrossRefGoogle Scholar
  76. 76.
    Elgazzar AH (2017) Diagnosis of traumatic disorders. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 150CrossRefGoogle Scholar
  77. 77.
    Ullah E, Ahmad M, Ali SA, Redhu N (2012) Primary hyperparathyroidism having multiple Brown tumors mimicking malignancy. Indian J Endocrinol Metab 16:1040–1042PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Coolens JL, Devos P, De Roo M (1985) Diffuse pulmonary uptake of 99mTc bone-imaging agents: case report and survey. Eur J Nucl Med 11:36–42PubMedCrossRefGoogle Scholar
  79. 79.
    Hain SF, Fogelman I (2002) Nuclear medicine studies in metabolic bone disease. Semin Musculoskelet Radiol 6:323–329PubMedCrossRefGoogle Scholar
  80. 80.
    Jorgetti V, Lopez BD, Caorsi H, Ferreira A, Palma A et al (2000) Different patterns of renal osteodystrophy in IberoAmerica. Am J Med Sci 320:76–80PubMedCrossRefGoogle Scholar
  81. 81.
    Elgazzar AH (2017) Diagnosis of metabolic, endocrine and congenital bone disease. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 120CrossRefGoogle Scholar
  82. 82.
    Burchardt P (1994) Biochemical and scintigraphic assessment of Paget’s disease. Semin Arthritis Rheum 23:237–239CrossRefGoogle Scholar
  83. 83.
    Elgazzar AH (2017) Diagnosis of metabolic, endocrine and congenital bone disease. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 106CrossRefGoogle Scholar
  84. 84.
    Shirazi PH, Ryan WG, Fordham EW (1974) Bone scanning in evaluation of Paget’s disease of the bone. CRC Crit Rev Clin Radiol Nucl Med 5:523–558PubMedGoogle Scholar
  85. 85.
    Elgazzar AH (2017) Diagnosis of metabolic, endocrine and congenital bone disease. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 116CrossRefGoogle Scholar
  86. 86.
    Fogelman I, MacKillop JH, Greig WR, Boyle IT (1977) Pseudofractures of the ribs detected by bone scanning. J Nucl Med 18:1236–1237PubMedGoogle Scholar
  87. 87.
    Elgazzar AH (2017) Diagnosis of metabolic, endocrine and congenital bone disease. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 127CrossRefGoogle Scholar
  88. 88.
    Morgan B, Coakley F, Finlay DB, Belton I (1996) Hypertrophic osteoarthropathy in staging skeletal scintigraphy for lung cancer. Clin Radiol 51:694–697PubMedCrossRefGoogle Scholar
  89. 89.
    Hardoff R, Eisenberg D, Gross B (1989) Bone scintigraphy in polyostotic fibrous dysplasia resembling multiple bone metastases. Clin Nucl Med 14:928–929PubMedCrossRefGoogle Scholar
  90. 90.
    Lee H, Lee KS, Lee WW (2015) 18F-NaF PET/CT findings in fibrous dysplasia. Clin Nucl Med 40:912–914PubMedCrossRefGoogle Scholar
  91. 91.
    Han J, Ryu JS, Shin MJ, Kang GH, Lee HK (2000) Fibrous dysplasia with barely increased uptake on bone scan: a case report. Clin Nucl Med 25:785–788PubMedCrossRefGoogle Scholar
  92. 92.
    Toba M, Hayashida K, Imakita S, Fukuchi K, Kume N, Shimotsu Y, Cho I, Ishida Y, Takamiya M, Kumita S (1998) Increased bone mineral turnover without increased glucose utilization in sclerotic and hyperplastic change in fibrous dysplasia. Ann Nucl Med 12:153–155PubMedCrossRefGoogle Scholar
  93. 93.
    Shehab D, Elgazzar A, Collier BD, Naddaf S, Al-Jarallah K et al (2006) Impact of three-phase bone scintigraphy on the diagnosis and treatment of complex regional pain syndrome type I or reflex sympathetic dystrophy. Med Princ Pract 15:46–51PubMedCrossRefGoogle Scholar
  94. 94.
    Goldsmith DP, Vivino FB, Eichenfield AH, Athreya BH, Heyman S (1989) Nuclear imaging and clinical features of childhood reflex neurovascular dystrophy: comparison with adults. Arthritis Rheum 32:480–485PubMedCrossRefGoogle Scholar
  95. 95.
    Magnussen JS, Chik K, Karplus T, Van der Wall H (1997) Ulnar distribution of reflex sympathetic dystrophy due to compression of the brachial plexus by a primary venous malformation. Skelet Radiol 26:303–305CrossRefGoogle Scholar
  96. 96.
    Turpin S, Taillefer R, Lambert R, Leveille J (1996) “Cold” reflex sympathetic dystrophy in an adult. Clin Nucl Med 21:94–97PubMedCrossRefGoogle Scholar
  97. 97.
    Lechevalier D, Eulry F, Crozes P, Pattin S (1992) In situ migratory algodystrophies of the knee. Value of modern imaging. Rev Rhum Mal Osteoartic 59:29–33PubMedGoogle Scholar
  98. 98.
    Sarikaya A, Sarikaya I, Pekindil G, Firat MF, Pekindil Y (2001) Technetium-99m sestamibi limb scintigraphy in post-traumatic reflex sympathetic dystrophy: preliminary results. Eur J Nucl Med 28:1517–1522PubMedCrossRefGoogle Scholar
  99. 99.
    Ryan PJ, Fogelman I (1997) Bone scintigraphy in metabolic bone disease. Semin Nucl Med 27:291–305PubMedCrossRefGoogle Scholar
  100. 100.
    Elgazzar AH (2017) Diagnosis of traumatic disorders. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 174CrossRefGoogle Scholar
  101. 101.
    Elgazzar AH (2017) Diagnosis of circulatory disorders. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 192CrossRefGoogle Scholar
  102. 102.
    Ryu JS, Kim JS, Moon DH, Kim SM, Shin MJ et al (2002) Bone SPECT is more sensitive than MRI in the detection of early osteonecrosis of the femoral head after renal transplantation. J Nucl Med 43:1006–1011PubMedGoogle Scholar
  103. 103.
    Agarwal KK, Mukherjee A, Sharma P, Bal C, Kumar R (2015) Incremental value of 99mTc-MDP hybrid SPECT/CT over planar scintigraphy and SPECT in avascular necrosis of the femoral head. Nucl Med Commun 36:1055–1062PubMedCrossRefGoogle Scholar
  104. 104.
    Dasa V, Adbel-Nabi H, Anders MJ, Mihalko WM (2008) F-18 fluoride positron emission tomography of the hip for osteonecrosis. Clin Orthop Relat Res 466:1081–1086PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Elgazzar AH (2017) Diagnosis of circulatory disorders. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 196CrossRefGoogle Scholar
  106. 106.
    Connolly LP, Treves ST, Connolly SA, Zimmerman RE, Bar-Sever Z et al (1998) Pediatric skeletal scintigraphy: applications of pinhole magnification. Radiographics 18:341–351PubMedCrossRefGoogle Scholar
  107. 107.
    Tsao AK, Dias LS, Conway JJ, Straka P (1997) The prognostic value and significance of serial bone scintigraphy in Legg-Calvé-Perthes disease. J Pediatr Orthop 17:230–239PubMedCrossRefGoogle Scholar
  108. 108.
    Elgazzar AH (2017) Diagnosis of circulatory disorders. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 205CrossRefGoogle Scholar
  109. 109.
    Skaggs DL, Kim SK, Greene NW, Harris D, Miller JH (2001) Differentiation between bone infarction and acute osteomyelitis in children with sickle-cell disease with use of sequential radionuclide bone-marrow and bone scans. J Bone Joint Surg Am 83:1810–1813PubMedCrossRefGoogle Scholar
  110. 110.
    Kawai K, Maruno H, Watanabe Y, Hirohata K (1980) Fat necrosis of osteocytes as a causative factor in idiopathic osteonecrosis in heritable hyperlipemic rabbits. Clin Orthop Relat Res 153:273Google Scholar
  111. 111.
    Laprade RF, Noffsinger MA (1990) Idiopathic osteonecrosis of the patella: an unusual cause of pain in the knee. J Bone Joint Surg 72A:1414–1418CrossRefGoogle Scholar
  112. 112.
    Yamamoto T, Bullough PG (2000) Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture. J Bone Joint Surg Am 82:858–866PubMedCrossRefGoogle Scholar
  113. 113.
    Glaudemans AW, Galli F, Pacilio M, Signore A (2013) Leukocyte and bacteria imaging in prosthetic joint infection. Eur Cell Mater 25:61–77PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Magnuson JE, Brown ML, Hauser MF, Berquist TH, Fitzgerald RH Jr et al (1988) In-111-labeled leukocyte scintigraphy in suspected orthopedic prosthesis infection: comparison with other imaging modalities. Radiology 168:235–239PubMedCrossRefGoogle Scholar
  115. 115.
    Larikka MJ, Ahonen AK, Junila JA, Niemelä O, Hämäläinen MM et al (2001) Extended combined 99mTc-white blood cell and bone imaging improves the diagnostic accuracy in the detection of hip replacement infections. Eur J Nucl Med 28:288–923PubMedCrossRefGoogle Scholar
  116. 116.
    Kim HO, Na SJ, Oh SJ, Jung BS, Lee SH et al (2014) Usefulness of adding SPECT/CT to 99mTc-hexamethylpropylene amine oxime (HMPAO)-labeled leukocyte imaging for diagnosing prosthetic joint infections. J Comput Assist Tomogr 38:313–319PubMedCrossRefGoogle Scholar
  117. 117.
    Hakki S, Harwood SJ, Morrissey MA, Camblin JG, Laven DL et al (1997) Comparative study of monoclonal antibody scan in diagnosing orthopaedic infection. Clin Orthop Relat Res 335:275–285Google Scholar
  118. 118.
    Harwood SJ, Camblin JG, Hakki S, Morrissey MA, Laven DL et al (1994) Use of technetium antigranulocyte monoclonal antibody Fab’ fragments for the detection of osteomyelitis. Cell Biophys 24–25:99–107PubMedCrossRefGoogle Scholar
  119. 119.
    Palestro CJ (2016) Radionuclide imaging of musculoskeletal infection: a review. J Nucl Med 57:1406–1412PubMedCrossRefGoogle Scholar
  120. 120.
    Stumpe KD, Romero J, Ziegler O, Kamel EM, von Schulthess GK et al (2006) The value of FDG-PET in patients with painful total knee arthroplasty. Eur J Nucl Med Mol Imaging 33:1218–1225PubMedCrossRefGoogle Scholar
  121. 121.
    Delank KS, Schmidt M, Michael JW, Dietlein M, Schicha H et al (2006) The implications of 18F-FDG PET for the diagnosis of endoprosthetic loosening and infection in hip and knee arthroplasty: results from a prospective, blinded study. BMC Musculoskelet Disord 7:20PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Palestro CJ (2014) Nuclear medicine and the failed joint replacement: past, present, and future. World J Radiol 6:446–458PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Elgazzar AH (2017) Diagnosis of circulatory disorders. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 80CrossRefGoogle Scholar
  124. 124.
    Weissberg DL, Resnick D, Taylor A, Becker M, Alazraki N (1978) Rheumatoid arthritis and its variants: analysis of scintiphotographic, radiographic, and clinical examinations. AJR Am J Roentgenol 131:665–673PubMedCrossRefGoogle Scholar
  125. 125.
    Elgazzar AH (2017) Diagnosis of joint disorder. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 284CrossRefGoogle Scholar
  126. 126.
    Cindas A, Gokce-Kustal Y, Kirth PO, Caner B (2001) Scintigraphic evaluation of synovial inflammation in rheumatoid arthritis with (99m) technetium-labelled human polyclonal immunoglobulin G. Rheumatol Int 20:71–77PubMedCrossRefGoogle Scholar
  127. 127.
    Gaal J, Mezes A, Siro B, Varga J, Galuska L, Janoky G et al (2002) 99mTc-HMPAO labelled leukocyte scintigraphy in patients with rheumatoid arthritis: a comparison with disease activity. Nucl Med Commun 23:39–46PubMedCrossRefGoogle Scholar
  128. 128.
    Elgazzar AH (2017) Diagnosis of joint disorder. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 288CrossRefGoogle Scholar
  129. 129.
    McCrae F, Shouls J, Dieppe P, Watt I (1992) Scintigraphic assessment of osteoarthritis of the knee joint. Ann Rheum Dis 51:939–942CrossRefGoogle Scholar
  130. 130.
    Holder LE, Machin JL, Asdourian PL, Links JM, Sexton CC (1995) Planar and high-resolution SPECT bone imaging in the diagnosis of facet syndrome. J Nucl Med 36:37–44PubMedGoogle Scholar
  131. 131.
    Mabray MC, Brus-Ramer M, Behr SC, Pampaloni MH, Majumdar S et al (2016) (18)F-sodium fluoride PET-CT hybrid imaging of the lumbar facet joints: tracer uptake and degree of correlation to CT-graded arthropathy. World J Nucl 15:85–90CrossRefGoogle Scholar
  132. 132.
    Houseni M, Chamroonrat W, Zhuang H, Alavi A (2006) Facet joint arthropathy demonstrated on FDG-PET. Clin Nucl Med 31:418–419PubMedCrossRefGoogle Scholar
  133. 133.
    Lentle BC, Russell AS, Percy JS, Jackson FI (1977) Scintigraphic findings in ankylosing spondylitis. J Nucl Med 18:524–528PubMedGoogle Scholar
  134. 134.
    Domeij-Nyberg B, Kjällman M, Nylén O, Petterson NO (1980) The reliability of quantitative bone scanning in sacro-iliitis. Scand J Rheumatol 9:77–79PubMedCrossRefGoogle Scholar
  135. 135.
    Barton LL, Dunkle LM, Habib FH (1987) Septic arthritis in childhood: a 13 year review. Am J Dis Child 141:898–900PubMedCrossRefGoogle Scholar
  136. 136.
    Silberstein EB, Elgazzar AH, Fernandez-Uloa M, Nishiyama H (1996) Skeletal scintigraphy in non-neoplastic osseous disorders. In: Henkin RE, Bles MA, Dillehay GL, Halama JR, Karesh SM, Wagner PH, Zimmer AM (eds) Textbook of nuclear medicine. Mosby, New York, pp 1141–1197Google Scholar
  137. 137.
    Elgazzar AH (2017) Diagnosis of joint disorders. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 301CrossRefGoogle Scholar
  138. 138.
    Hannallah D, White AP, Goldberg G, Albert TJ (2007) Diffuse idiopathic skeletal hyperostosis. Oper Tech Orthop 17:174–177CrossRefGoogle Scholar
  139. 139.
    Srinivasan A, Lee J, Mangla S (2008) Diffuse idiopathic skeletal hyperostosis. Contemp Diagn Radiol 31:1–5CrossRefGoogle Scholar
  140. 140.
    Elgazzar AH (2017) Diagnosis of metabolic, endocrine, and congenital bone disease. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 136CrossRefGoogle Scholar
  141. 141.
    Yang Z, Reed T, Longino BH (2016) Bone Scintigraphy SPECT/CT evaluation of mandibular condylar hyperplasia. J Nucl Med Technol 44(1):49–51PubMedCrossRefGoogle Scholar
  142. 142.
    Rushinek H, Tabib R, Fleissig Y, Klein M, Tshori S (2016) Evaluation of three analysis methods for 99mTc MDP SPECT scintigraphy in the diagnosis of unilateral condylar hyperplasia. Int J Oral Maxillofac Surg 45(12):1607–1613PubMedCrossRefGoogle Scholar
  143. 143.
    Elgazzar AH (2017) Diagnosis of traumatic disorders. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 177CrossRefGoogle Scholar
  144. 144.
    Hirschmann MT, Iranpour F, Davda K, Rasch H, Hugli R, Friederich NF (2010) Combined single photon emission computerized tomography and conventional computerized tomography (SPECT/CT): clinical value for the knee surgeons? Knee Surg Sports Traumatol Arthrosc 18:341–345PubMedCrossRefGoogle Scholar
  145. 145.
    Christine E, Draper CE, Andrew Quon A, Michael Fredericson M, Besier TF et al (2012) Comparison of MRI and 18F-NaF PET/CT in patients with patellofemoral pain. J Magn Reson Imaging 36:928–932CrossRefGoogle Scholar
  146. 146.
    Nagaraj N, Elgazzar AH, Fernandez-Ulloa M (1995) Heterotopic ossification mimicking infection: scintigraphic evaluation. Clin Nucl Med 20:763–766PubMedCrossRefGoogle Scholar
  147. 147.
    Shehab D, Elgazzar AH, Collier BD (2002) Heterotopic ossification. J Nucl Med 43:346–353PubMedGoogle Scholar
  148. 148.
    Tyler JL, Derbekyan V, Lisbona R (1984) Early diagnosis of myositis ossificans with Tc-99m diphosphonate imaging. Clin Nucl Med 9:256–258PubMedCrossRefGoogle Scholar
  149. 149.
    Orzel JA, Rudd TG (1985) Heterotopic bone formation: clinical, laboratory and imaging correlation. J Nucl Med 26:125–132PubMedGoogle Scholar
  150. 150.
    Tibone J, Sakimura I, Nickel VL, Hsu JD (1978) Heterotopic ossification around the hip in spinal cord-injured patients: a long-term follow-up study. J Bone Joint Surg Am 60:769–775PubMedCrossRefGoogle Scholar
  151. 151.
    Muheim G, Donath A, Rossier AB (1973) Serial scintigrams in the course of ectopic bone formation in paraplegic patients. AJR 118:865–869CrossRefGoogle Scholar
  152. 152.
    Tanaka T, Rossier AB, Hussey RW, Ahnberg DS, Treves S (1977) Quantitative assessment of para-osteo-arthropathy and its maturation on serial radionuclide bone images. Radiology 123:217–221PubMedCrossRefGoogle Scholar
  153. 153.
    Pickhardt PJ, McDermott M (1997) Intense uptake of technetium-99m-MDP in primary breast adenocarcinoma with sarcomatoid metaplasia. J Nucl Med 38:528–530PubMedGoogle Scholar
  154. 154.
    Tsuji T, Yamamuro T, Kotoura Y, Matsumoto M, Tanaka H et al (1988) Uptake of 99Tcm-MDP in lung metastasis from osteosarcoma: clinical and animal studies. Nucl Med Commun 9:947–954PubMedCrossRefGoogle Scholar
  155. 155.
    Wallace JC, Beyea D (1988) Cerebral infarction pattern identified on emission computed tomography using technetium-99m MDP. Clin Nucl Med 13:268–270PubMedCrossRefGoogle Scholar
  156. 156.
    Elgazzar AH (2017) Diagnosis of soft tissue calcification. In: Elgazzar AH (ed) Orthopedic nuclear medicine. Springer, p 324CrossRefGoogle Scholar
  157. 157.
    Wong DC (1998) Malignant ascites visualized on a radionuclide bone scan. Australas Radiol 1998(42):246–247CrossRefGoogle Scholar
  158. 158.
    Wale DJ, Wong KK, Savas H, Kandathil A, Piert M, Brown RK (2015) Extraosseous findings on bone scintigraphy using fusion SPECT/CT and correlative imaging. AJR Am J Roentgenol 205:160–172PubMedCrossRefGoogle Scholar
  159. 159.
    Zuckier LS, Freeman LM (2010) Nonosseous, nonurologic uptake on bone scintigraphy: atlas and analysis. Semin Nucl Med 40:242–256PubMedCrossRefGoogle Scholar
  160. 160.
    Castaigne C, Martin P, Blocklet D (2003) Lung, gastric, and soft tissue uptake ofTc-99m MDP and Ga-67 citrate associated with hypercalcemia. Clin Nucl Med 28:467–471PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Abdelhamid H. Elgazzar
    • 1
  • Ismet Sarikaya
    • 1
  1. 1.Department of Nuclear MedicineKuwait UniversitySafatKuwait

Personalised recommendations