Advertisement

Endocrine System

  • Abdelhamid H. Elgazzar
  • Ismet Sarikaya
Chapter

Abstract

Thyroid scan and uptake evaluate the functional (hyper, hypo, or normal function) and structural (enlargement, nodules, ectopy) status of the thyroid gland. These are used to differentiate Graves’ disease from toxic nodular goiter, thyroiditis, and factitious hyperthyroidism, determine the functional status of the thyroid nodule(s), locate ectopic thyroid tissues, evaluate babies with congenital hypothyroidism, and determine if a neck mass contains thyroid tissue.

References

  1. 1.
    Society of Nuclear Medicine procedure guideline for thyroid uptake measurement version 3.0, approved 5 Sept 2006Google Scholar
  2. 2.
    Elgazzar AH (2014) Endocrine system. In: Elgazzar AH (ed) Synopsis of pathophysiology in nuclear medicine. Springer, Berlin, p 125CrossRefGoogle Scholar
  3. 3.
    Joshi SD, Joshi SS, Daimi SR, Athavale SA (2010) The thyroid gland and its variations: a cadaveric study. Folia Morphol (Warsz) 69:47–50Google Scholar
  4. 4.
    McLean R, Howard N, Murray IP (1985) Thyroid dysgenesis in monozygotic twins: variants identified by scintigraphy. Eur J Nucl Med 10:346–348CrossRefPubMedGoogle Scholar
  5. 5.
    Pinczower E, Crockett DM, Atkinson JB, Kun S (1992) Preoperative thyroid scanning in presumed thyroglossal duct cysts. Arch Otolaryngol Head Neck Surg 118:985–988CrossRefPubMedGoogle Scholar
  6. 6.
    Chin BB, Patel P, Cohade C, Ewertz M, Wahl R et al (2004) Recombinant human thyrotropin stimulation of fluoro-D-glucose positron emission tomography uptake in well-differentiated thyroid carcinoma. J Clin Endocrinol Metab 89:91–95CrossRefPubMedGoogle Scholar
  7. 7.
    Sherman SI, Tielens ET, Sostre S, Wharam MD Jr, Ladenson PW et al (1994) Clinical utility of post-treatment radioiodine scans in the management of patients with thyroid carcinoma. J Clin Endocrinol Metab 78:629–634PubMedGoogle Scholar
  8. 8.
    Society of Nuclear Medicine procedure guideline for scintigraphy for differentiated papillary and follicular thyroid cancer. Sept 2006Google Scholar
  9. 9.
    Oh JR, Ahn BC (2012) False-positive uptake on radioiodine whole-body scintigraphy: physiologic and pathologic variants unrelated to thyroid cancer. Am J Nucl Med Mol Imaging 2:362–385PubMedPubMedCentralGoogle Scholar
  10. 10.
    Chung JK, Lee YJ, Jeong JM, Lee DS, Lee MC et al (1997) Clinical significance of hepatic visualization on iodine-131 whole-body scan in patients with thyroid carcinoma. J Nucl Med 38:1191–1195PubMedGoogle Scholar
  11. 11.
    Bombardieri E, Giammarile F, Aktolun C, Baum RP, Bischof Delaloye A, et al, European Association for Nuclear Medicine (2010) 131I/123I-metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 37:2436–2446CrossRefPubMedGoogle Scholar
  12. 12.
    Nakajo M, Shapiro B, Copp J, Kalff V, Gross MD et al (1983) The normal and abnormal distribution of the adrenomedullary imaging agent m-[I-131]iodobenzylguanidine (1-131 MIBG) in man: evaluation by scintigraphy. J Nucl Med 24:672–682PubMedGoogle Scholar
  13. 13.
    Elgazzar AH, Gelfand MJ, Washburn LC, Clark J, Nagaraj N et al (1995) 1-123 MIBG scintigraphy in adults. A report of clinical experience. Clin Nucl Med 20:147–152CrossRefPubMedGoogle Scholar
  14. 14.
    Ruffini V, Fisher GA, Shulkin BL, Sisson JC, Shapiro B (1996) Iodine-123-MIBG imaging of neuroblastoma: utility of SPECT and delayed imaging. J Nucl Med 37:1464–1468Google Scholar
  15. 15.
    Jacobsson H, Johansson L, Kimiaei S, Larsson SA (1999) Concentration of 123I-metaiodobenzylguanidine in left and right liver lobes. Findings indicate regional differences in function in the normal liver. Acta Radiol 40:224–228CrossRefPubMedGoogle Scholar
  16. 16.
    Ilias I, Pacak K (2004) Current approaches and recommended algorithm for the diagnostic localization of pheochromocytoma. J Clin Endocrinol Metab 89:479–491CrossRefPubMedGoogle Scholar
  17. 17.
    van Essen M, Krenning EP, Kam BLR, de Jong M, Valkema R et al (2009) Peptide-receptor radionuclide therapy for endocrine tumors. Nat Rev Endocrinol 5:382–393CrossRefPubMedGoogle Scholar
  18. 18.
    Reisinger I, Bohuslavitzki KH, Brenner W, Braune S, Dittrich I et al (1998) Somatostatin receptor scintigraphy in small-cell lung cancer: results of a multicenter study. J Nucl Med 39:224–227PubMedGoogle Scholar
  19. 19.
    Kwekkeboom DJ, Krenning EP, Kho GS, Breeman WA, Van Hagen PM et al (1998) Somatostatin receptor imaging in patients with sarcoidosis. Eur J Nucl Med 25:1284–1292CrossRefPubMedGoogle Scholar
  20. 20.
    OctreoScan [package insert] (2006) Mallinckrodt Medical Inc., Loma Linda, CAGoogle Scholar
  21. 21.
    Theodoropoulou M, Stalla GK (2013) Somatostatin receptors: from signaling to clinical practice. Front Neuroendocrinol 34:228–252CrossRefPubMedGoogle Scholar
  22. 22.
    Balon HR, Brown TL, Goldsmith SJ, Silberstein EB, Krenning EP, et al, Society of Nuclear Medicine (2011) The SNM practice guideline for somatostatin receptor scintigraphy 2.0. J Nucl Med Technol 39:317–324Google Scholar
  23. 23.
    Gabriel M, Oberauer A, Dobrozemsky G, Decristoforo C, Putzer D et al (2009) 68Ga-DOTA-Tyr3-octreotide PET for assessing response to somatostatin-receptor-mediated radionuclide therapy. J Nucl Med 50:1427–1434CrossRefPubMedGoogle Scholar
  24. 24.
    Kowalski J, Henze M, Schuhmacher J, Maecke HR, Hofmann M et al (2003) Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D-Phe1-Tyr3-octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol 5:42–48CrossRefPubMedGoogle Scholar
  25. 25.
    Buchmann I, Henze M, Engelbrecht S, Eisenhut M, Runz A et al (2007) Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 34:1617–1626CrossRefPubMedGoogle Scholar
  26. 26.
    Kao A, Shiau YC, Tsai SC, Wang JJ, Ho ST (2002) Technetium-99m methoxyisobutylisonitrile imaging for parathyroid adenoma: relationship to P-glycoprotein or multidrug resistance-related protein expression. Eur J Nucl Med Mol Imaging 29:1012–1015CrossRefPubMedGoogle Scholar
  27. 27.
    Elgazzar AH, Anim JT, Dannoon SF, Farghaly MM (2017) Ultrastructure of hyperfunctioning parathyroid glands: does it explain various patterns of (99m)Tc-sestamibi uptake. World J Nucl Med 16:145–149CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Goris ML, Basso LV, Keeling C (1991) Parathyroid imaging. J Nucl Med 32:887–889PubMedGoogle Scholar
  29. 29.
    Dasgupta DJ, Navalkissoor S, Ganatra R, Buscombe J (2013) The role of single-photon emission computed tomography/computed tomography in localizing parathyroid adenoma. Nucl Med Commun 34:621–626CrossRefPubMedGoogle Scholar
  30. 30.
    Rubello D, Fig LM, Casara D, Piotto A, Boni G, et al, Italian Study Group on Surgery and Immunoscintigraphy (GISCRIS) (2006) Radioguided surgery of parathyroid adenomas and recurrent thyroid cancer using the “low sestamibi dose” protocol. Cancer Biother Radiopharm 21:194–205Google Scholar
  31. 31.
    Ryan JJ, Rezkalla MA, Rizk SN, Peterson KG, Wiebe RH (1995) Testosterone-secreting adrenal adenoma that contained crystalloids of Reinke in an adult female patient. Mayo Clin Proc 70:380–383CrossRefPubMedGoogle Scholar
  32. 32.
    Rubello D, Bui C, Casara D, Gross MD, Fig LM, Shapiro B (2002) Functional scintigraphy of the adrenal gland. Eur J Endocrinol 147:13–28CrossRefPubMedGoogle Scholar
  33. 33.
    Shapiro B, Fig L, Gross MD, Khafagi F (1989) Radiocholesterol diagnosis of adrenal disease. Crit Rev Clin Lab Sci 27:265–298CrossRefPubMedGoogle Scholar
  34. 34.
    Pasieka JL, Requeda E, Reach JE, Plouin PF, Savoie JC (1992) Adrenal scintigraphy of well-differentiated (functioning) adrenocortical carcinomas:potential surgical pitfalls. Surgery 112:884–890PubMedGoogle Scholar
  35. 35.
    Nomura K, Kusakabe K, Maki M, Ito Y, Aiba M et al (1990) Iodomethylnorcholesterol uptake in an aldosteronoma shown by dexamethasone-suppression scintigraphy: relationship to adenoma size and functional activity. J Clin Endocrinol Metab 71:825–830CrossRefPubMedGoogle Scholar
  36. 36.
    Kazerooni EA, Sisson JC, Shapiro B, Gross MD, Driedger A et al (1990) Diagnostic accuracy and pitfalls of [iodine-131]6-beta-iodomethyl-19-norcholesterol (NP-59) imaging. J Nucl Med 31:526–534PubMedGoogle Scholar
  37. 37.
    Hennings J, Lindhe O, Bergström M, Långström B, Sundin A et al (2006) [11C]metomidate positron emission tomography of adrenocortical tumors in correlation with histopathological findings. J Clin Endocrinol Metab 91:1410–1414CrossRefPubMedGoogle Scholar
  38. 38.
    Pacini F, Burroni L, Ciuoli C, Di Cairano G, Guarino E (2004) Management of thyroid nodules: a clinicopathological, evidence-based approach. Eur J Nucl Med Mol Imaging 31:1443–1449CrossRefPubMedGoogle Scholar
  39. 39.
    Tan GH, Gharib H (1997) Thyroid incidentalomas: management approaches to nonpalpable nodules discovered incidentally on thyroid imaging. Ann Intern Med 126:226–231CrossRefPubMedGoogle Scholar
  40. 40.
    Guth S, Theune U, Aberle J, Galach A, Bamberger CM (2009) Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur J Clin Investig 39:699–706CrossRefGoogle Scholar
  41. 41.
    Elgazzar AH (2014) Endocrine system. In: Elgazzar AH (ed) Synopsis of pathophysiology in nuclear medicine. Springer, Berlin, p 130CrossRefGoogle Scholar
  42. 42.
    Belfiore A, La Rosa GL, La Porta GA, Giuffrida D, Milazzo G et al (1992) Cancer risk in patients with cold thyroid nodules: relevance of iodine intake, sex, age, and multinodularity. Am J Med 93:363–369CrossRefPubMedGoogle Scholar
  43. 43.
    Freitas JE (2000) Therapeutic options in the management of toxic and non-toxic nodular goiter. Semin Nucl Med 30:88–97CrossRefPubMedGoogle Scholar
  44. 44.
    Santos Palacios S, Pascual-Corrales E, Galofre JC (2012) Management of subclinical hyperthyroidism. Int J Endocrinol Metab 10:490–496CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Oates E (1993) Owl’s eye appearance of a thyroid cyst. Clin Nucl Med 18:1003CrossRefPubMedGoogle Scholar
  46. 46.
    Silberstein EB, Alavi A, Balon HR, Clarke SE, Divgi C et al (2012) The SNMMI practice guideline for therapy of thyroid disease with 131I 3.0. J Nucl Med 53:1633–1651CrossRefPubMedGoogle Scholar
  47. 47.
    Knobel M (2016) Etiopathology, clinical features, and treatment of diffuse and multinodular nontoxic goiters. J Endocrinol Investig 39:357–373CrossRefGoogle Scholar
  48. 48.
    Gaitan E (1988) Goitrogens. Baillieres Clin Endocrinol Metab 2:683–702CrossRefPubMedGoogle Scholar
  49. 49.
    Torre G, Barreca A, Borgonovo G, Minuto M, Ansaldo GL et al (2000) Goiter recurrence in patients submitted to thyroid-stimulating hormone suppression: possible role of insulin-like growth factors and insulin-like growth factor-binding proteins. Surgery 127:99–103CrossRefPubMedGoogle Scholar
  50. 50.
    Braga-Basaria M, Basaria S (2004) Marine-Lenhart syndrome. Thyroid 14:1107CrossRefPubMedGoogle Scholar
  51. 51.
    Cakir M (2004) Diagnosis of Marine-Lenhart syndrome. Thyroid 14:555CrossRefPubMedGoogle Scholar
  52. 52.
    Ross DS, Burch HB, Cooper DS, Greenlee MC, Laurberg P, et al (2016) 2016 American Thyroid Association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid 26:1343–1421CrossRefPubMedGoogle Scholar
  53. 53.
    Li LX, Wu X, Hu B, Zhang HZ, Lu HK (2014) Localized subacute thyroiditis presenting as a painful hot nodule. BMC Endocr Disord 14:4CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ramtoola S, Maisey MN, Clarke SE, Fogelman I (1988) The thyroid scan in Hashimoto’s thyroiditis: the great mimic. Nucl Med Commun 9:639–645CrossRefPubMedGoogle Scholar
  55. 55.
    Dunham B, Nicol TL, Ishii M, Basaria S (2006) Suppurative thyroiditis. Lancet 368:1742CrossRefPubMedGoogle Scholar
  56. 56.
    Al-Kordi RS, Alenizi E, Elgazzar AH (2008) Acute suppurative thyroiditis with abscess, gas formation, and thyrotoxic crisis. Nuklearmedizin 47:N44–N46PubMedGoogle Scholar
  57. 57.
    Bagazzi BL, Gasperi M, Braverman LE, Martino E (2001) The various effect of amiodarone on thyroid function. Thyroid 11:511–519CrossRefGoogle Scholar
  58. 58.
    Muller AF, Drexhage HA, Berghout A (2001) Postpartum thyroiditis and autoimmune thyroiditis in women of childbearing age: recent insights and consequences for antenatal and postnatal care. Endocr Rev 22:605–630CrossRefPubMedGoogle Scholar
  59. 59.
    Park HM, Tarver RD, Siddiqui AR, Schauwecker DS, Wellman HN (1987) Efficacy of thyroid scintigraphy in the diagnosis of intrathoracic goiter. AJR Am J Roentgenol 148:527–529CrossRefPubMedGoogle Scholar
  60. 60.
    Kim CY, Jeong SY, Lee SW, Lee J, Ahn BC (2014) Scintigraphic demonstrations of a retrosternal goiter. Rev Esp Med Nucl Imagen Mol 33:183–184PubMedGoogle Scholar
  61. 61.
    Ahn BC (2016) Retrosternal goiter visualized on 99mTc pertechnetate SPECT/CT, but not on planar scintigraphy. Clin Nucl Med 41:e169–e170CrossRefPubMedGoogle Scholar
  62. 62.
    McKitrick WL, Park HM, Kosegi JE (1985) Parallax error in pinhole thyroid scintigraphy: a critical consideration in the evaluation of substernal goiters. J Nucl Med 26:418–420PubMedGoogle Scholar
  63. 63.
    Williams JL, Paul DL, Bisset G (2013) Thyroid disease in children: part 1: state-of-the-art imaging in pediatric hypothyroidism. Pediatr Radiol 43:1244–1253CrossRefPubMedGoogle Scholar
  64. 64.
    Sfakianakis GN, Ezuddin SH, Sanchez JE, Eidson M, Cleveland W (1999) Pertechnetate scintigraphy in primary congenital hypothyroidism. J Nucl Med 40:799–804PubMedGoogle Scholar
  65. 65.
    Perry RJ, Maroo S, Maclennan AC, Jones JH, Donaldson MD (2006) Combined ultrasound and isotope scanning is more informative in the diagnosis of congenital hypothyroidism than single scanning. Arch Dis Child 91:972–976CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Khan SU, Khan AU, Khan A, Khan K, Ullah H (2009) Thyroid dyshormonogenesis detected through a modified perchlorate discharge test using a gamma-camera. Nucl Med Commun 30:574–576CrossRefPubMedGoogle Scholar
  67. 67.
    Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ et al (2016) 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26:1–133CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Mertens IJ, De Klerk JM, Zelissen PM, Thijssen JH, Sie-Go DM et al (1999) Undetectable serum thyroglobulin in a patient with metastatic follicular thyroid cancer. Clin Nucl Med 24:346–349CrossRefPubMedGoogle Scholar
  69. 69.
    Ma C, Kuang A, Xie J, Ma T (2005) Possible explanations for patients with discordant findings of serum thyroglobulin and 131I whole-body scanning. J Nucl Med 46:1473–1480PubMedGoogle Scholar
  70. 70.
    Ruiz Franco-Baux JV, Borrego Dorado I, Gomez CP, Rodriguez Jr R, Vazquez Albertino RJ, et al (2005) [F-18-fluordeoxyglucose positron emission tomography on patients with differentiated thyroid cancer who present elevated human serum thyroglobulin levels and negative I-131 whole body scan]. Rev Esp Med Nucl 24:5–13Google Scholar
  71. 71.
    Lowe VJ, Mullan BP, Hay ID, McIver B, Kasperbauer JL (2003) F-18-FDG PET of patients with Hurthle cell carcinoma. J Nucl Med 44:1402–1406PubMedGoogle Scholar
  72. 72.
    Shapiro B, Rufini V, Jarwan A, Geatti O, Kearfott KJ et al (2000) Artifacts, anatomical and physiological variants, and unrelated diseases that might cause false-positive whole-body 131-I scans in patients with thyroid cancer. Semin Nucl Med 30:115–132CrossRefPubMedGoogle Scholar
  73. 73.
    Lassmann M, Hanscheid H, Chiesa C, Hindorf C, Flux G et al (2008) EANM Dosimetry Committee series on standard procedures for pre-therapeutic dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging 35:1405–1412CrossRefPubMedGoogle Scholar
  74. 74.
    Lee VS, Wilkinson RH Jr, Leight GS Jr, Coogan AC, Coleman RE (1995) Hyperparathyroidism in high-risk surgical patients: evaluation with double-phase technetium-99m sestamibi imaging. Radiology 197:627–633CrossRefPubMedGoogle Scholar
  75. 75.
    Yen TC, Tzen KY, Lee CM, Tsai CC (1999) Squamous cell carcinoma of the lung mimicking an ectopic mediastinal parathyroid adenoma demonstrated by Tc-99m sestamibi in a hypercalcemic patient. Clin Nucl Med 24:895–896CrossRefPubMedGoogle Scholar
  76. 76.
    Bhatnagar A, Vezza PR, Bryan JA, Atkins FB, Ziessman HA (1998) Technetium-99m-sestamibi parathyroid scintigraphy: effect of P-glycoprotein, histology and tumor size on detectability. J Nucl Med 39:1617–1620PubMedGoogle Scholar
  77. 77.
    Pons F, Torregrosa JV, Fuster D (2003) Biological factors influencing parathyroid localization. Nucl Med Commun 24:121–124CrossRefPubMedGoogle Scholar
  78. 78.
    Neumann DR, Esselstyn CB, Maclntyre WJ, Go RT, Obuchowski NA et al (1996) Comparison of F-18-FDG-PET and sestamibi-SPECT in primary hyperparathyroidism. J Nucl Med 37:1809–1815PubMedGoogle Scholar
  79. 79.
    Hayakawa N, Nakamoto Y, Kurihara K, Yasoda A, Kanamoto N et al (2015) A comparison between 11C-methionine PET/CT and MIBI SPECT/CT for localization of parathyroid adenomas/hyperplasia. Nucl Med Commun 36:53–59CrossRefPubMedGoogle Scholar
  80. 80.
    Martínez-Rodríguez I, Martínez-Amador N, de Arcocha-Torres M, Quirce R, Ortega-Nava F et al (2014) Comparison of 99mTc-sestamibi and 11C-methionine PET/CT in the localization of parathyroid adenomas in primary hyperparathyroidism. Rev Esp Med Nucl Imagen Mol 33:93–98PubMedGoogle Scholar
  81. 81.
    Michaud L, Burgess A, Huchet V, Lefèvre M, Tassart M et al (2014) Is 18F-fluorocholine-positron emission tomography/computerized tomography a new imaging tool for detecting hyperfunctioning parathyroid glands in primary or secondary hyperparathyroidism? J Clin Endocrinol Metab 99:4531–4536CrossRefPubMedGoogle Scholar
  82. 82.
    Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D et al (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518CrossRefPubMedGoogle Scholar
  83. 83.
    Ruf J, Hueck F, Schiefer J, Denecke T, Elgeti F et al (2010) Impact of multiphase 68Ga-DOTATOC-PET/CT on therapy management in patients with neuroendocrine tumors. Neuroendocrinology 91:101–109CrossRefPubMedGoogle Scholar
  84. 84.
    Maroun J, Kocha W, Kvols L, Bjarnason G, Chen E et al (2006) Guidelines for the diagnosis and management of carcinoid tumours. Part 1: the gastrointestinal tract. A statement from a Canadian National Carcinoid Expert Group. Curr Oncol 13:67–76PubMedPubMedCentralGoogle Scholar
  85. 85.
    Hoegerle S, Altehoefer C, Ghanem N, Koehler G, Waller CF et al (2001) Wholebody 18F dopa PET for detection of gastrointestinal carcinoid tumours. Radiology 220:373–380CrossRefPubMedGoogle Scholar
  86. 86.
    Koopmans KP, de Vries EG, Kema IP et al (2006) Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol 7:728–734CrossRefPubMedGoogle Scholar
  87. 87.
    Schirmer WJ, Melvin WS, Rush RM, O'Dorisio TM, Pozderac RV et al (1995) Indium-111-pentetreotide scanning versus conventional imaging techniques for the localization of gastrinoma. Surgery 118:1105–1113CrossRefPubMedGoogle Scholar
  88. 88.
    Briganti V, Matteini M, Ferri P, Vaggelli L, Castagnoli A, Pieroni C (2001) Octreoscan SPET evaluation in the diagnosis of pancreas neuroendocrine tumors. Cancer Biother Radiopharm 16:515–524CrossRefPubMedGoogle Scholar
  89. 89.
    Ellison EC, Schirmer WJ, Olsen JO, Pozderac RV, Hinkle G et al (1997) Localization of neuroendocrine tumors using somatostatin receptor imaging with indium-111-pentetreotide (OctreoScan). Cancer Control 4:35–39CrossRefPubMedGoogle Scholar
  90. 90.
    Mojiminiyi OA, Udelsman R, Soper ND, Shepstone BJ, Dudley NE (1991) Pentavalent Tc-99m DMSA scintigraphy. Prospective evaluation of its role in the management of patients with medullary carcinoma of the thyroid. Clin Nucl Med 16:259–262CrossRefPubMedGoogle Scholar
  91. 91.
    Arslan N, Ilgan S, Yuksel D, Serdengecti M, Bulakbasi N et al (2001) Comparison of In-111 octreotide and Tc-99m (V) DMSA scintigraphy in the detection of medullary thyroid tumor foci in patients with elevated levels of tumor markers after surgery. Clin Nucl Med 26:683–688CrossRefPubMedGoogle Scholar
  92. 92.
    Diehl M, Risse JH, Brandt-Mainz K, Dietlein M, Bohuslavizki KH et al (2001) Fluorine-18 fluorodeoxyglucose positron emission tomography in medullary thyroid cancer: results of a multicentre study. Eur J Nucl Med 28:1671–1676CrossRefPubMedGoogle Scholar
  93. 93.
    de Groot JW, Links TP, Jager PL, Kahraman T, Plukker JT (2004) Impact of 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in patients with biochemical evidence of recurrent or residual medullary thyroid cancer. Ann Surg Oncol 11:786–794CrossRefPubMedGoogle Scholar
  94. 94.
    Beheshti M, Pöcher S, Vali R, Waldenberger P, Broinger G et al (2009) The value of 18F-DOPA PET-CT in patients with medullary thyroid carcinoma: comparison with F-18-FDG PET-CT. Eur Radiol 19:1425–1434CrossRefPubMedGoogle Scholar
  95. 95.
    Hoegerle S, Altehoefer C, Ghanem N, Brink I, Moser E et al (2001) 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 28:64–71CrossRefPubMedGoogle Scholar
  96. 96.
    Luster M, Karges W, Zeich K, Pauls S, Verburg FA et al (2010) Clinical value of 18-fluorine-fluorodihydroxyphenylalanine positron emission tomography/computed tomography in the follow-up of medullary thyroid carcinoma. Thyroid 20:527–533CrossRefPubMedGoogle Scholar
  97. 97.
    Marzola MC, Pelizzo MR, Ferdeghini M, Toniato A, Massaro A et al (2010) Dual PET/CT with (18)F-DOPA and (18)F-FDG in metastatic medullary thyroid carcinoma and rapidly increasing calcitonin levels: comparison with conventional imaging. Eur J Surg Oncol 36:414–421CrossRefPubMedGoogle Scholar
  98. 98.
    Elgazzar AH (2014) Endocrine system. In: Elgazzar AH (ed) Synopsis of pathophysiology in nuclear medicine. Springer, Berlin, p 147CrossRefGoogle Scholar
  99. 99.
    Evangelista L, De Falco T, di Nuzzo C, Salvatore M (2008) Utility of adrenal cortical scintigraphy with 131I-6-β-methyl-norcholesterol in a case of mismatch between morphological and functional PET imaging. Thyroid Sci 3:CR1-CR3Google Scholar
  100. 100.
    Nielsen JT, Nielsen BV, Rehling M (1996) Location of adrenal medullary pheochromocytoma by I-123 metaiodobenzylguanidine SPECT. Clin Nucl Med 21:695–699CrossRefPubMedGoogle Scholar
  101. 101.
    Gabriel S, Blanchet EM, Sebag F, Chen CC, Fakhry N et al (2013) Functional characterization of nonmetastatic paraganglioma and pheochromocytoma by (18) F-FDOPA PET: focus on missed lesions. Clin Endocrinol 79:170–177CrossRefGoogle Scholar
  102. 102.
    Imani F, Agopian VG, Auerbach MS, Walter MA, Imani F et al (2009) 18F-FDOPA PET and PET/CT accurately localize pheochromocytomas. J Nucl Med 50:513–519CrossRefPubMedGoogle Scholar
  103. 103.
    Taïeb D, Timmers HJ, Hindié E, Guillet BA, Neumann HP et al (2012) European Association of Nuclear Medicine. EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 39:1977–1995CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Timmers HJ, Kozupa A, Chen CC, Carrasquillo JA, Ling A et al (2007) Superiority of fluorodeoxyglucose positron emission tomography to other functional imaging techniques in the evaluation of metastatic SDHB-associated pheochromocytoma and paraganglioma. J Clin Oncol 25:2262–2269CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Abdelhamid H. Elgazzar
    • 1
  • Ismet Sarikaya
    • 1
  1. 1.Department of Nuclear MedicineKuwait UniversitySafatKuwait

Personalised recommendations