Advertisement

Wilson’s Disease

  • France Woimant
  • Pascal Chaine
  • Aurélia Poujois
Chapter

Abstract

Wilson’s disease (WD) is an autosomal recessive disorder characterized by copper accumulation in many organs. WD is caused by mutations in the ATP7B gene located on chromosome 13. Copper cellular metabolism is regulated by two copper-transporting ATPases (ATP7A and ATP7B). In WD, defective ATP7B function impaired both copper incorporation to ceruloplasmin and copper release into the bile, resulting in copper accumulation in the liver. In the absence of diagnosis and treatment at this stage, WD evolves towards a systemic disease, with copper accumulation in other organs including the brain, eyes, kidneys, etc. First symptoms are usually hepatic in children and neurological in adults. WD is characterized by low serum ceruloplasmin and total copper concentrations and increased urinary copper excretion. A new tool, the relative exchangeable copper is very useful for diagnosis and family screening. Differential diagnosis of copper abnormalities are reviewed. Molecular biology confirms the diagnosis in 95% of cases. Treatment is based on diet, copper chelators or zinc salts. Liver transplantation is the treatment of acute fulminant liver failure and of decompensated cirrhosis. It remains controversial in severe neurological forms. WD has a good prognosis if treatment is initiated early and continued all the lifetime. So, follow up of these patients is very important to make sure of the observance, the efficiency and the tolerance of the treatment and to search for hepatocellular carcinoma that is a late complication of the liver disease.

Keywords

Copper accumulation in Wilson’s disease Wilson’s disease ATP7B Copper accumulation in organs Hepato-lenticular degeneration Wilson’s gene 

References

  1. 1.
    Kinnier Wilson SA. Progressive lenticular degeneration: a familial nervous disease associated with cirrhosis of the liver. Brain. 1912;34:295–507.CrossRefGoogle Scholar
  2. 2.
    Cocos R, Şendroiu A, Schipor S, et al. Genotype-phenotype correlations in a mountain population community with high prevalence of Wilson’s disease: genetic and clinical homogeneity. PLoS One. 2014;9:e98520.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Thomas GR, Roberts EA, Walshe JM, et al. Haplotypes and mutations in Wilson disease. Am J Hum Genet. 1995;56:1315–9.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Coffey AJ, Durkie M, Hague S, et al. A genetic study of Wilson’s disease in the United Kingdom. Brain. 2013;136:1476–87.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ala A, Borjigin J, Rochwarger A, et al. Wilson’s disease in septuagenarian siblings: raising the bar for diagnosis. Hepatology. 2005;41:668–70.CrossRefPubMedGoogle Scholar
  6. 6.
    Czlonkowska A, Rodo M, Gromadzka G. Late onset Wilson’s disease: therapeutic implications. Mov Disord. 2008;23:896–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Figus A, Angius A, Loudianos G, et al. Molecular pathology and haplotype analysis of Wilson disease in Mediterranean populations. Am J Hum Genet. 1995;57:1318–24.PubMedPubMedCentralGoogle Scholar
  8. 8.
    de Bie P, van de Sluis B, Burstein E, et al. Distinct Wilson’s disease mutations in ATP7B are associated with enhanced binding to COMMD1 and reduced stability of ATP7B. Gastroenterology. 2007;133:1316–26.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Merle U, Stremmel W, Gessner R. Influence of homozygosity for methionine at codon 129 of the human prion gene on the onset of neurological and hepatic symptoms in Wilson disease. Arch Neurol. 2006;63:982–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Gromadzka G, Rudnicka M, Chabik G, et al. Genetic variability in the methylenetetra-hydrofolate reductase gene MTHFR affects clinical expression of Wilson’s disease. J Hepatol. 2011;55:913–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Gromadzka G, Członkowska A. Influence of IL-1RN intron 2 variable number of tandem repeats VNTR polymorphism on the age at onset of neurological symptoms in Wilson’s disease. Int J Neurosci. 2011;121:8–15.CrossRefPubMedGoogle Scholar
  12. 12.
    Schiefermeier M, Kollegger H, Madl C, et al. The impact of apolipoprotein E genotypes on age at onset of symptoms and phenotypic expression in Wilson’s disease. Brain. 2000;123:585–90.CrossRefPubMedGoogle Scholar
  13. 13.
    Litwin T, Gromadzka G, Członkowska A. Apolipoprotein E gene APOE genotype in Wilson’s disease: impact on clinical presentation. Parkinsonism Relat Disord. 2012;18:367–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Barnes N, Tsivkovskii R, Tsivkovskaia N, et al. The copper-transporting ATPases, Menkes and Wilson disease proteins, have distinct roles in adult and developing cerebellum. J Biol Chem. 2005;280:9640–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Lutsenko S, Barnes NL, Bartee MY, et al. Function and regulation of human copper-transporting ATPases. Physiol Rev. 2007;87:1011–46.CrossRefPubMedGoogle Scholar
  16. 16.
    Vulpe C, Levinson B, Whitney S, et al. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet. 1993;3:7–13.CrossRefPubMedGoogle Scholar
  17. 17.
    Valentine JS, Gralla EB. Delivering copper inside yeast and human cells. Science. 1997;278:817–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Zischka H, Lichtmannegger J. Pathological mitochondrial copper overload in livers of Wilson’s disease patients and related animal models. Ann N Y Acad Sci. 2014;315:6–15.CrossRefGoogle Scholar
  19. 19.
    Mufti AR, Burstein E, Csomos RA, et al. XIAP is a copper binding protein deregulated in Wilson’s disease and other copper toxicosis disorders. Mol Cell. 2006;21:775–85.CrossRefPubMedGoogle Scholar
  20. 20.
    Huster D, Finegold MJ, Morgan CT, et al. Consequences of copper accumulation in the livers of the Atp7b−/− (Wilson disease gene) knockout mice. Am J Pathol. 2006;168:423–34.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Trocello JM, Chappuis P, El Balkhi S, et al. Abnormal copper metabolism in adult. Rev Med Interne. 2010;31:750–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Beyersdorff A, Findeisen A. Morbus Wilson: case report of a two-year-old child as first manifestation. Scand J Gastroenterol. 2006;41:496–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Ala A, Walker AP, Ashkan K, et al. Wilson’s disease. Lancet. 2007;369:397–408.CrossRefPubMedGoogle Scholar
  24. 24.
    Pfeiffenberger J, Mogler C, Gotthardt DN, et al. Hepatobiliary malignancies in Wilson disease. Liver Int. 2014;35:1615–22.CrossRefPubMedGoogle Scholar
  25. 25.
    Pendlebury ST, Rothwell PM, Dalton A, et al. Stroke-like presentation of Wilson disease with homozygosity for a novel T766R mutation. Neurology. 2004;63:1982–3.CrossRefPubMedGoogle Scholar
  26. 26.
    Trocello JM, Woimant F. Case study 3. In: Schapira A, Hartmann A, Agid Y, editors. Parkinsonian disorders in clinical practice. Oxford: Wiley-Blackwell; 2008. p. 74–8.Google Scholar
  27. 27.
    Lorincz MT. Neurologic Wilson’s disease. Ann N Y Acad Sci. 2010;1184:173–87.CrossRefPubMedGoogle Scholar
  28. 28.
    Hoogenraad T. Wilson’s disease. Amsterdam: Internal Medical Publishers; 2001.Google Scholar
  29. 29.
    Dening TR, Berrios GE, Walshe JM. Wilson’s disease and epilepsy. Brain. 1988;111:1139–55.CrossRefPubMedGoogle Scholar
  30. 30.
    Deguchi K, Sasaki I, Touge T, et al. Improvement of cardiovascular autonomic dysfunction following anti-copper therapy in Wilson’s disease. J Neurol. 2005;252:495–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Kumar TS, Moses PD. Isolated tongue involvement--an unusual presentation of Wilson’s disease. J Postgrad Med. 2005;51:337.PubMedGoogle Scholar
  32. 32.
    Wenisch E, De Tassigny A, Trocello JM, et al. Cognitive profile in Wilson’s disease: a case series of 31 patients. Rev Neurol. 2013;169:944–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Zimbrean PC, Schilsky ML. Psychiatric aspects of Wilson disease: a review. Gen Hosp Psychiatry. 2014;36:53–62.CrossRefPubMedGoogle Scholar
  34. 34.
    Suvarna JC. Kayser-Fleischer ring. J Postgrad Med. 2008;54:238–40.CrossRefPubMedGoogle Scholar
  35. 35.
    Roberts EA, Schilsky ML. American Association for Study of Liver Diseases (AASLD). Diagnosis and treatment of Wilson disease: an update. Hepatology. 2008;47:2089–111.CrossRefPubMedGoogle Scholar
  36. 36.
    Ingster-Moati I, Bui Quoc E, Pless M, et al. Ocular motility and Wilson’s disease: a study on 34 patients. J Neurol Neurosurg Psychiatry. 2007;78:1199–201.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Trocello JM, Leyendecker A, Chaine P, et al. La maladie de Wilson. Aspects obstrétrico-gynécologiques. Rev Prat Gynecol Obstret. 2008;126:11–2.Google Scholar
  38. 38.
    Quemeneur AS, Trocello JM, Ea HK, et al. Bone status and fractures in 85 adults with Wilson’s disease. Osteoporos Int. 2014;25:2573–80.CrossRefPubMedGoogle Scholar
  39. 39.
    Merle U, Eisenbach C, Weiss KH, et al. Serum ceruloplasmin oxidase activity is a sensitive and highly specific diagnostic marker for Wilson’s disease. J Hepatol. 2009;51:925–30.CrossRefPubMedGoogle Scholar
  40. 40.
    Steindl P, Ferenci P, Dienes HP, et al. Wilson’s disease in patients presenting with liver disease: a diagnostic challenge. Gastroenterology. 1997;113:212–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Pfeiffer RF. Wilson’s disease. Semin Neurol. 2007;27:123–32.CrossRefPubMedGoogle Scholar
  42. 42.
    Chappuis P, Bost M, Misrahi M, et al. Wilson disease: clinical and biological aspects. Ann Biol Clin (Paris). 2005;63:457–66.Google Scholar
  43. 43.
    Twomey PJ, Viljoen A, Reynolds TM, et al. Non-ceruloplasmin-bound copper in routine clinical practice in different laboratories. J Trace Elem Med Biol. 2008;22:50–3.CrossRefPubMedGoogle Scholar
  44. 44.
    El Balkhi S, Trocello JM, Poupon J, et al. Relative exchangeable copper: a new highly sensitive and highly specific biomarker for Wilson’s disease diagnosis. Clin Chim Acta. 2011;412:2254–60.CrossRefPubMedGoogle Scholar
  45. 45.
    Foruny JR, Boixeda D, López-Sanroman A, et al. Usefulness of penicillamine-stimulated urinary copper excretion in the diagnosis of adult Wilson’s disease. Scand J Gastroenterol. 2008;43:597–603.CrossRefPubMedGoogle Scholar
  46. 46.
    Ferenci P, Steindl-Munda P, Vogel W, et al. Diagnostic value of quantitative hepatic copper determination in patients with Wilson’s disease. Clin Gastroenterol Hepatol. 2005;3:811–8.CrossRefPubMedGoogle Scholar
  47. 47.
    El Balkhi S, Poupon J, Trocello JM, et al. Determination of ultrafiltrable and exchangeable copper in plasma: stability and reference values in healthy subjects. Anal Bioanal Chem. 2009;394(5):1477–84.CrossRefPubMedGoogle Scholar
  48. 48.
    Trocello JM, El Balkhi S, Woimant F, et al. Relative exchangeable copper: a promising tool for family screening in Wilson disease. Mov Disord. 2013;29:558–62.CrossRefPubMedGoogle Scholar
  49. 49.
    Poujois A, Trocello JM, Djebrani-Oussedik N, et al. Exchangeable copper: a reflection of the neurological severity in Wilson’s disease. Eur J Neurol. 2017;24(1):154–60.CrossRefPubMedGoogle Scholar
  50. 50.
    Sener RN. Diffusion MR imaging changes associated with Wilson disease. Am J Neuroradiol. 2003;24:965–7.PubMedGoogle Scholar
  51. 51.
    Trocello JM, Guichard JP, Leyendecker A, et al. Corpus callosum abnormalities in Wilson’s disease. J Neurol Neurosurg Psychiatry. 2010;82:1119–21.CrossRefPubMedGoogle Scholar
  52. 52.
    Mikol J, Vital C, Wassef M, et al. Extensive cortico-subcortical lesions in Wilson's disease: clinico-pathological study of two cases. Acta Neuropathol. 2005;110:451–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Skowrońska M, Litwin T, Dzieżyc K, et al. Does brain degeneration in Wilson disease involve not only copper but also iron accumulation? Neurol Neurochir Pol. 2013;47:542–6.PubMedGoogle Scholar
  54. 54.
    Yang J, Li X, Yang R, et al. Susceptibility-weighted imaging manifestations in the brain of Wilson’s disease patients. PLoS One. 2015;10:e0125100.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Favrole P, Chabriat H, Guichard JP, et al. Clinical correlates of cerebral water diffusion in Wilson disease. Neurology. 2006;66:384–9.CrossRefPubMedGoogle Scholar
  56. 56.
    van Wassenaer-van Hall HN, van den Heuvel AG, Algra A, et al. Wilson disease: findings at MR imaging and CT of the brain with clinical correlation. Radiology. 1996;198:531–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Martinelli D, Dionisi-Vici C. AP1S1 defect causing MEDNIK syndrome: a new adaptinopathy associated with defective copper metabolism. Ann N Y Acad Sci. 2014;1314:55–63.CrossRefPubMedGoogle Scholar
  58. 58.
    Martinelli D, Travaglini L, Drouin CA, et al. MEDNIK syndrome: a novel defect of copper metabolism treatable by zinc acetate therapy. Brain. 2013;136:872–81.CrossRefPubMedGoogle Scholar
  59. 59.
    Bremner I. Manifestations of copper excess. Am J Clin Nutr. 1998;67:1069S–73S.CrossRefPubMedGoogle Scholar
  60. 60.
    Müller T, Müller W, Feichtinger H. Idiopathic copper toxicosis. Am J Clin Nutr. 1998;108:2S–6S.Google Scholar
  61. 61.
    Nations SP, Boyer PJ, Love LA, et al. Denture cream: an unusual source of excess zinc, leading to hypocupremia and neurologic disease. Neurology. 2008;71:639–43.CrossRefPubMedGoogle Scholar
  62. 62.
    Trocello JM, Hinfray S, Sanda N, et al. An unrecognized cause of myelopathy associated with copper deficiency: the use of denture cream. Rev Neurol (Paris). 2011;167:537–40.CrossRefGoogle Scholar
  63. 63.
    Madsen E, Gitlin JD. Copper deficiency. Curr Opin Gastroenterol. 2007;23:187–92.CrossRefPubMedGoogle Scholar
  64. 64.
    Harris ZL, Takahashi Y, Miyajima H, et al. Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc Natl Acad Sci U S A. 1995;92:2539–43.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    McNeill A, Pandolfo M, Kuhn J, et al. The neurological presentation of ceruloplasmin gene mutations. Eur Neurol. 2008;60:200–5.CrossRefPubMedGoogle Scholar
  66. 66.
    Kuhn J, Miyajima H, Takahashi Y, et al. Extrapyramidal and cerebellar movement disorder in association with heterozygous ceruloplasmin gene mutation. J Neurol. 2005;252:111–3.CrossRefPubMedGoogle Scholar
  67. 67.
    Miyajima H, Takahashi Y, Kamata T, et al. Use of desferrioxamine in the treatment of aceruloplasminemia. Ann Neurol. 1997;41:404–7.CrossRefPubMedGoogle Scholar
  68. 68.
    Skidmore FM, Drago V, Foster P, et al. Aceruloplasminaemia with progressive atrophy without brain iron overload: treatment with oral chelation. J Neurol Neurosurg Psychiatry. 2008;79:467–70.CrossRefPubMedGoogle Scholar
  69. 69.
    Kuhn J, Bewermeyer H, Miyajima H, et al. Treatment of symptomatic heterozygous aceruloplasminemia with oral zinc sulphate. Brain and Development. 2007;29:450–3.CrossRefPubMedGoogle Scholar
  70. 70.
    Donsante A, Yi L, Zerfas PM, et al. ATP7A gene addition to the choroid plexus results in long-term rescue of the lethal copper transport defect in a Menkes disease mouse model. Mol Ther. 2011;19:2114–23.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Proud VK, Mussell HG, Kaler SG, et al. Distinctive Menkes disease variant with occipital horns: delineation of natural history and clinical phenotype. Am J Med Genet. 1996;65:44–51.CrossRefPubMedGoogle Scholar
  72. 72.
    Huppke P, Brendel C, Kalscheuer V, et al. Mutations in SLC33A1 cause a lethal autosomal-recessive disorder with congenital cataracts, hearing loss, and low serum copper and ceruloplasmin. Am J Hum Genet. 2012;90:61–8.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kaler SG. Inborn errors of copper metabolism. Handb Clin Neurol. 2013;113:1745–54.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Socha P, Vajro P, Lefeber D, et al. Search for rare liver diseases: the case of glycosylation defects mimicking Wilson disease. Clin Res Hepatol Gastroenterol. 2014;38:403–6.CrossRefPubMedGoogle Scholar
  75. 75.
    Goez HR, Jacob FD, Fealey RD, et al. An unusual presentation of copper metabolism disorder and a possible connection with Niemann-Pick type C. J Child Neurol. 2011;26:518–21.CrossRefPubMedGoogle Scholar
  76. 76.
    Ferrara J, Jankovic J. Acquired hepatocerebral degeneration. J Neurol. 2009;256:320–2.CrossRefPubMedGoogle Scholar
  77. 77.
    Renjen PN, Khanna L, Rastogi R, et al. Acquired hepatocerebral degeneration. BMJ Case Rep. 2013.; pii: bcr2013009387Google Scholar
  78. 78.
    Stamelou M, Tuschl K, Chong WK, et al. Dystonia with brain manganese accumulation resulting from SLC30A10 mutations: a new treatable disorder. Mov Disord. 2012;27:1317–22.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Woimant F, Chaine P, Favrole P, et al. Wilson disease. Rev Neurol (Paris). 2006;162:773–81.CrossRefGoogle Scholar
  80. 80.
    Merle U, Schaefer M, Ferenci P, et al. Clinical presentation, diagnosis and long-term outcome of Wilson’s disease: a cohort study. Gut. 2007;56:115–20.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Brewer GJ, Askari F, Lorincz MT, et al. Treatment of Wilson disease with ammonium tetrathiomolybdate: IV. Comparison of tetrathiomolybdate and trientine in a double-blind study of treatment of the neurologic presentation of Wilson disease. Arch Neurol. 2006;63:521–7.CrossRefPubMedGoogle Scholar
  82. 82.
    Wiggelinkhuizen M, Tilanus ME, Bollen CW, et al. Systematic review: clinical efficacy of chelator agents and zinc in the initial treatment of Wilson disease. Aliment Pharmacol Ther. 2009;29(9):947–58.CrossRefPubMedGoogle Scholar
  83. 83.
    Czlonkowska A, Litwin T, Karliński M, et al. D-penicillamine versus zinc sulfate as first-line therapy for Wilson’s disease. Eur J Neurol. 2014;21:599–606.CrossRefPubMedGoogle Scholar
  84. 84.
    Weiss KH, Thurik F, Gotthardt DN, et al. Efficacy and safety of oral chelators in treatment of patients with Wilson disease. Clin Gastroenterol Hepatol. 2013;11:1028–35.CrossRefPubMedGoogle Scholar
  85. 85.
    Guillaud O, Dumortier J, Sobesky R, et al. Long term results of liver transplantation for Wilson’s disease: experience in France. J Hepatol. 2014;60:579–89.CrossRefPubMedGoogle Scholar
  86. 86.
    Medici V, Mirante VG, Fassati LR, et al. Monotematica AISF 2000 OLT study group. Liver transplantation for Wilson’s disease: the burden of neurological and psychiatric disorders. Liver Transpl. 2005;11:1056–63.CrossRefPubMedGoogle Scholar
  87. 87.
    Laurencin C, Brunet AS, Dumortier J, et al. Liver transplantation in Wilson’s disease with neurological impairment: evaluation in 4 patients. Eur Neurol. 2016;77:5–15.CrossRefPubMedGoogle Scholar
  88. 88.
    Merle U, Stremmel W, Encke J. Perspectives for gene therapy of Wilson disease. Curr Gene Ther. 2007;7:217–20.CrossRefPubMedGoogle Scholar
  89. 89.
    Walshe JM, Waldenström E, Sams V, et al. Abdominal malignancies in patients with Wilson’s disease. QJM. 2003;96:657–62.CrossRefPubMedGoogle Scholar
  90. 90.
    Dzieżyc K, Litwin T, Sobańska A, et al. Symptomatic copper deficiency in three Wilson’s disease patients treated with zinc sulphate. Neurol Neurochir Pol. 2014;48:214–8.PubMedGoogle Scholar
  91. 91.
    Denoyer Y, Woimant F, Bost M, et al. Neurological Wilson’s disease lethal for the son, asymptomatic in the father. Mov Disord. 2013;28:402–3.CrossRefPubMedGoogle Scholar
  92. 92.
    Hahn SH. Population screening for Wilson’s disease. Ann N Y Acad Sci. 2014;1315:64–9.CrossRefPubMedGoogle Scholar
  93. 93.
    Dufernez F, Lachaux A, Chappuis P, et al. Wilson disease in offspring of affected patients: report of four French families. Clin Res Hepatol Gastroenterol. 2013;37:240–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • France Woimant
    • 1
  • Pascal Chaine
    • 1
  • Aurélia Poujois
    • 1
  1. 1.Reference Centre for Rare Diseases: Wilson’s Disease and other rare diseases linked to the copperNeurology Department, Lariboisière HospitalParisFrance

Personalised recommendations