Advertisement

Pompe Disease

  • Alexander Peter Murphy
  • Volker Straub
Chapter

Abstract

Pompe disease is a rare progressive multisystem disorder first identified in 1932, and caused by a deficiency of the enzyme acid α-glucosidase. To date, over 350 pathogenic mutations have been identified in the gene which codes for this enzyme (GAA). Mutations causing Pompe disease are highly ethnicity dependent and may suggest founder mutations.

Pompe disease can present at any time of life, from the more severe classical infantile to the adult onset form. Due to the insidious onset of symptoms and the rareness of the disease; diagnosis of Pompe disease is often delayed. Investigations which may aid in diagnosis include serum creatine kinase, dried blood spot testing, periodic acid-Schiff (PAS) staining, immunohistochemical analysis of muscle biopsy, magentic resonance imaging and molecular genetic testing.

Management of Pompe disease is multidisciplinary and patients require regular review. Supportive treatments include appropriate ventilatory support and physiotherapy to maintain ambulation. Enzyme replacement therapy (ERT) has been given to patients for more than a decade and has shown significant improvements in survival of patients with classical infantile Pompe disease. Future research is directed at improving ERT via regulation of autophagy and immune modulation regimens.

Keywords

Pompe disease Glycogen storage disease type 2 Pathogenesis Magnetic resonance imaging Enzyme replacement therapy 

Notes

Acknowledgments

The authors would like to thank the team at the Newcastle University John Walton Muscular Dystrophy Research Centre for their support and the MYO-MRI COST Action (BM1304) for information on MRI findings. Diagnostic facilities at the John Walton Muscular Dystrophy Research Centre are supported by the Rare Diseases Advisory Group Service for Neuromuscular Diseases (NHS England). Clinical research could not take place without close involvement of patients and their families who volunteer to participate in trials and give permission for invasive procedures. The John Walton Muscular Dystrophy Research Centre is part of the MRC Centre for Neuromuscular Diseases.

Disclosure Statement

VS is or has been a principal investigator for trials sponsored by Genzyme/Sanofi, GSK, Prosensa/Biomarin, ISIS Pharmaceuticals, and Sarepta. He received speaker honoraria from Genzyme/Sanofi, is a member of the international Pompe advisory board of Genzyme/ Sanofi, and has been on advisory boards for Acceleron Pharma, Audentes, Italfarmaco S.p.A., Nicox, Pfizer, Prosensa, Santhera and TrophyNOD. He also has a research collaboration with Ultragenyx and Genzyme/Sanofi.

References

  1. 1.
    Pompe J. Over idiopatische hypertrophie van het hart. Ned Tijdschr Geneesk. 1932;76:304–11.Google Scholar
  2. 2.
    De Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955;60(4):604–17.PubMedCentralCrossRefGoogle Scholar
  3. 3.
    Hers HG. alpha-Glucosidase deficiency in generalized glycogenstorage disease (Pompe’s disease). Biochem J. 1963;86:11–6.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Martiniuk F, Chen A, Mack A, Arvanitopoulos E, Chen Y, Rom WN, et al. Carrier frequency for glycogen storage disease type II in New York and estimates of affected individuals born with the disease. Am J Med Genet. 1998;79(1):69–72.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Chien YH, Chiang SC, Zhang XK, Keutzer J, Lee NC, Huang AC, et al. Early detection of Pompe disease by newborn screening is feasible: results from the Taiwan screening program. Pediatrics. 2008;122(1):e39–45.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Hirschhorn R, Reuser AJJ. Glycogen storage disease type II: acid alpha-glucosidase (acid maltase) deficiency. In: Scriver CR, Beaudet al, Sly WS, Valle D, editors; Childs B, Kinzler KW, Vogelstein B, editors. The metabolic and molecular bases of inherited disease. 8th edn. New York: McGraw-Hill; 2001. pp. 3389–3419. assoc, eds.Google Scholar
  7. 7.
    Ausems MG, ten Berg K, Kroos MA, van Diggelen OP, Wevers RA, Poorthuis BJ, et al. Glycogen storage disease type II: birth prevalence agrees with predicted genotype frequency. Community Genet. 1999;2(2–3):91–6.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Klinge L, Straub V, Neudorf U, Voit T. Enzyme replacement therapy in classical infantile pompe disease: results of a ten-month follow-up study. Neuropediatrics. 2005;36(1):6–11.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Mechtler TP, Stary S, Metz TF, De Jesus VR, Greber-Platzer S, Pollak A, et al. Neonatal screening for lysosomal storage disorders: feasibility and incidence from a nationwide study in Austria. Lancet. 2012;379(9813):335–41.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Kuo WL, Hirschhorn R, Huie ML, Hirschhorn K. Localization and ordering of acid alpha-glucosidase (GAA) and thymidine kinase (TK1) by fluorescence in situ hybridization. Hum Genet. 1996;97(3):404–6.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Hoefsloot LH, Hoogeveen-Westerveld M, Kroos MA, van Beeumen J, Reuser AJ, Oostra BA. Primary structure and processing of lysosomal alpha-glucosidase; homology with the intestinal sucrase-isomaltase complex. EMBO J. 1988;7(6):1697–704.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Eramus MC. Mutations in Human Acid Alpha Glucosidase Gene 2014. Available from: https://www.erasmusmc.nl/klinische_genetica/research/lijnen/pompe_center/?lang=en
  13. 13.
    Hermans MM, van Leenen D, Kroos MA, Beesley CE, Van Der Ploeg AT, Sakuraba H, et al. Twenty-two novel mutations in the lysosomal alpha-glucosidase gene (GAA) underscore the genotype-phenotype correlation in glycogen storage disease type II. Hum Mutat. 2004;23(1):47–56.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Montalvo AL, Bembi B, Donnarumma M, Filocamo M, Parenti G, Rossi M, et al. Mutation profile of the GAA gene in 40 Italian patients with late onset glycogen storage disease type II. Hum Mutat. 2006;27(10):999–1006.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    van der Ploeg AT, Reuser AJ. Pompe's disease. Lancet. 2008;372(9646):1342–53.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Hermans MM, De Graaff E, Kroos MA, Mohkamsing S, Eussen BJ, Joosse M, et al. The effect of a single base pair deletion (delta T525) and a C1634T missense mutation (pro545leu) on the expression of lysosomal alpha-glucosidase in patients with glycogen storage disease type II. Hum Mol Genet. 1994;3(12):2213–8.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Wens SC, Kroos MA, de Vries JM, Hoogeveen-Westerveld M, Wijgerde MG, van Doorn PA, et al. Remarkably low fibroblast acid alpha-glucosidase activity in three adults with Pompe disease. Mol Genet Metab. 2012;107(3):485–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Di Iorio GCF, Stromillo L, Sodano L, Capone E, Farina O. S1.3 Adult-onset Pompe disease. Acta Myol. 2011;30(3):200–2.PubMedCentralGoogle Scholar
  19. 19.
    Griffin JL. Infantile acid maltase deficiency. I. Muscle fiber destruction after lysosomal rupture. Virchows Archiv B, Cell pathology including. Mol Pathol. 1984;45(1):23–36.Google Scholar
  20. 20.
    Shea L, Raben N. Autophagy in skeletal muscle: implications for Pompe disease. Int J Clin Pharmacol Ther. 2009;47(Suppl 1):S42–7.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Fukuda T, Ewan L, Bauer M, Mattaliano RJ, Zaal K, Ralston E, et al. Dysfunction of endocytic and autophagic pathways in a lysosomal storage disease. Ann Neurol. 2006;59(4):700–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hermans MM, Wisselaar HA, Kroos MA, Oostra BA, Reuser AJ. Human lysosomal alpha-glucosidase: functional characterization of the glycosylation sites. Biochem J. 1993;289(Pt 3):681–6.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Baethmann M, Volker S, Reuser A. Pompe disease. 2nd ed. Bremen: Uni Med; 2014.Google Scholar
  24. 24.
    Raben N, Schreiner C, Baum R, Takikita S, Xu S, Xie T, et al. Suppression of autophagy permits successful enzyme replacement therapy in a lysosomal storage disorder--murine Pompe disease. Autophagy. 2010;6(8):1078–89.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Engel AG. Acid maltase deficiency in adults: studies in four cases of a syndrome which may mimic muscular dystrophy or other myopathies. Brain. 1970;93(3):599–616.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Fukuda T, Ahearn M, Roberts A, Mattaliano RJ, Zaal K, Ralston E, et al. Autophagy and mistargeting of therapeutic enzyme in skeletal muscle in Pompe disease. Mol Ther. 2006;14(6):831–9.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kishnani PS, Hwu W-L, Mandel H, Nicolino M, Yong F, Corzo D. A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J Pediatr. 2006;148(5):671–6.e2.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    van den Hout HM, Hop W, van Diggelen OP, Smeitink JA, Smit GP, Poll-The BT, et al. The natural course of infantile Pompe’s disease: 20 original cases compared with 133 cases from the literature. Pediatrics. 2003;112(2):332–40.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Slonim AE, Bulone L, Ritz S, Goldberg T, Chen A, Martiniuk F. Identification of two subtypes of infantile acid maltase deficiency. J Pediatr. 2000;137(2):283–5.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kishnani PS, Nicolino M, Voit T, Rogers RC, Tsai AC, Waterson J, et al. Chinese hamster ovary cell-derived recombinant human acid alpha-glucosidase in infantile-onset Pompe disease. J Pediatr. 2006;149(1):89–97.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    van Capelle CI, Goedegebure A, Homans NC, Hoeve HL, Reuser AJ, van der Ploeg AT. Hearing loss in Pompe disease revisited: results from a study of 24 children. J Inherit Metab Dis. 2010;33(5):597–602.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kamphoven JH, de Ruiter MM, Winkel LP, Van den Hout HM, Bijman J, De Zeeuw CI, et al. Hearing loss in infantile Pompe’s disease and determination of underlying pathology in the knockout mouse. Neurobiol Dis. 2004;16(1):14–20.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Hanisch F, Rahne T, Plontke SK. Prevalence of hearing loss in patients with late-onset Pompe disease: audiological and otological consequences. Int J Audiol. 2013;52(12):816–23.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Gungor D, Reuser AJ. How to describe the clinical spectrum in Pompe disease? Am J Med Genet Part A. 2013;161a(2):399–400.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Felice KJ, Alessi AG, Grunnet ML. Clinical variability in adult-onset acid maltase deficiency: report of affected sibs and review of the literature. Medicine. 1995;74(3):131–5.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Laforet P, Nicolino M, Eymard PB, Puech JP, Caillaud C, Poenaru L, et al. Juvenile and adult-onset acid maltase deficiency in France: genotype-phenotype correlation. Neurology. 2000;55(8):1122–8.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Mellies U, Ragette R, Schwake C, Baethmann M, Voit T, Teschler H. Sleep-disordered breathing and respiratory failure in acid maltase deficiency. Neurology. 2001;57(7):1290–5.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Byrne BJ, Kishnani PS, Case LE, Merlini L, Muller-Felber W, Prasad S, et al. Pompe disease: design, methodology, and early findings from the Pompe Registry. Mol Genet Metab. 2011;103(1):1–11.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Hagemans ML, Winkel LP, Van Doorn PA, Hop WJ, Loonen MC, Reuser AJ, et al. Clinical manifestation and natural course of late-onset Pompe’s disease in 54 Dutch patients. Brain. 2005;128(Pt 3):671–7.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kishnani PS, Amartino HM, Lindberg C, Miller TM, Wilson A, Keutzer J. Timing of diagnosis of patients with Pompe disease: data from the Pompe registry. Am J Med Genet Part A. 2013;161a(10):2431–43.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Herzog A, Hartung R, Reuser AJ, Hermanns P, Runz H, Karabul N, et al. A cross-sectional single-centre study on the spectrum of Pompe disease, German patients: molecular analysis of the GAA gene, manifestation and genotype-phenotype correlations. Orphanet J Rare Dis. 2012;7:35.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Winkel LP, Hagemans ML, van Doorn PA, Loonen MC, Hop WJ, Reuser AJ, et al. The natural course of non-classic Pompe’s disease; a review of 225 published cases. J Neurol. 2005;252(8):875–84.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    van der Beek NA, de Vries JM, Hagemans ML, Hop WC, Kroos MA, Wokke JH, et al. Clinical features and predictors for disease natural progression in adults with Pompe disease: a nationwide prospective observational study. Orphanet J Rare Dis. 2012;7:88.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Barnes D, Hughes RA, Spencer GT. Adult-onset acid maltase deficiency with prominent bulbar involvement and ptosis. J R Soc Med. 1993;86(1):50.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Groen WB, Leen WG, Vos AM, Cruysberg JR, van Doorn PA, van Engelen BG. Ptosis as a feature of late-onset glycogenosis type II. Neurology. 2006;67(12):2261–2.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Ravaglia S, Bini P, Garaghani KS, Danesino C. Ptosis in Pompe disease: common genetic background in infantile and adult series. J Neuroophthalmol. 2010;30(4):389–90.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Mori M, Bailey LA, Estrada J, Rehder CW, Li JS, Rogers JG, et al. Severe cardiomyopathy as the isolated presenting feature in an adult with late-onset Pompe disease: a case report. JIMD Rep. 2017;31:79–83.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kishnani PS, Corzo D, Nicolino M, Byrne B, Mandel H, Hwu WL, et al. Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology. 2007;68(2):99–109.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kishnani PS, Steiner RD, Bali D, Berger K, Byrne BJ, Case LE, et al. Pompe disease diagnosis and management guideline. Genet Med. 2006;8(5):267–88.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Levesque S, Auray-Blais C, Gravel E, Boutin M, Dempsey-Nunez L, Jacques PE, et al. Diagnosis of late-onset Pompe disease and other muscle disorders by next-generation sequencing. Orphanet J Rare Dis. 2016;11:8.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Angelini C, Savarese M, Fanin M, Nigro V. Next generation sequencing detection of late onset Pompe disease. Muscle Nerve. 2016;53(6):981–3.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Huie ML, Kasper JS, Arn PH, Greenberg CR, Hirschhorn R. Increased occurrence of cleft lip in glycogen storage disease type II (GSDII): exclusion of a contiguous gene syndrome in two patients by presence of intragenic mutations including a novel nonsense mutation Gln58Stop. Am J Med Genet. 1999;85(1):5–8.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Wens SC, Schaaf GJ, Michels M, Kruijshaar ME, van Gestel TJ, In't Groen S, et al. Elevated plasma cardiac troponin T levels caused by skeletal muscle damage in Pompe disease. Circ Cardiovasc Genet. 2016;9(1):6–13.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    An Y, Young SP, Hillman SL, Van Hove JL, Chen YT, Millington DS. Liquid chromatographic assay for a glucose tetrasaccharide, a putative biomarker for the diagnosis of Pompe disease. Anal Biochem. 2000;287(1):136–43.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Young SP, Zhang H, Corzo D, Thurberg BL, Bali D, Kishnani PS, et al. Long-term monitoring of patients with infantile-onset Pompe disease on enzyme replacement therapy using a urinary glucose tetrasaccharide biomarker. Genet Med. 2009;11(7):536–41.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Young SP, Piraud M, Goldstein JL, Zhang H, Rehder C, Laforet P, et al. Assessing disease severity in Pompe disease: the roles of a urinary glucose tetrasaccharide biomarker and imaging techniques. Am J Med Genet C Semin Med Genet. 2012;160c(1):50–8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Reuser A, Verheijen F, Kroos M, Okumiya T, Van Diggelen O, Van der Ploeg A, et al. Enzymatic and molecular strategies to diagnose Pompe disease. Expert Opin Med Diagn. 2010;4(1):79–89.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Gutierrez-Rivas E, Bautista J, Vilchez JJ, Muelas N, Diaz-Manera J, Illa I, et al. Targeted screening for the detection of Pompe disease in patients with unclassified limb-girdle muscular dystrophy or asymptomatic hyperCKemia using dried blood: a Spanish cohort. Neuromuscul Disord. 2015;25(7):548–53.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Musumeci O, la Marca G, Spada M, Mondello S, Danesino C, Comi GP, et al. LOPED study: looking for an early diagnosis in a late-onset Pompe disease high-risk population. J Neurol Neurosurg Psychiatry. 2016;87(1):5–11.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Lukacs Z, Nieves Cobos P, Wenninger S, Willis TA, Guglieri M, Roberts M, et al. Prevalence of Pompe disease in 3,076 patients with hyperCKemia and limb-girdle muscular weakness. Neurology. 2016;87(3):295–8.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Oda E, Tanaka T, Migita O, Kosuga M, Fukushi M, Okumiya T, et al. Newborn screening for Pompe disease in Japan. Mol Genet Metab. 2011;104(4):560–5.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Verma J, Thomas DC, Kasper DC, Sharma S, Puri RD, Bijarnia-Mahay S, et al. Inherited metabolic disorders: efficacy of enzyme assays on dried blood spots for the diagnosis of lysosomal storage disorders. JIMD Rep. 2016;31:15–27.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Hagemans ML, Stigter RL, van Capelle CI, van der Beek NA, Winkel LP, van Vliet L, et al. PAS-positive lymphocyte vacuoles can be used as diagnostic screening test for Pompe disease. J Inherit Metab Dis. 2010;33(2):133–9.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kleijer WJ, van der Kraan M, Kroos MA, Groener JE, van Diggelen OP, Reuser AJ, et al. Prenatal diagnosis of glycogen storage disease type II: enzyme assay or mutation analysis? Pediatr Res. 1995;38(1):103–6.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Pichiecchio A, Uggetti C, Ravaglia S, Egitto MG, Rossi M, Sandrini G, et al. Muscle MRI in adult-onset acid maltase deficiency. Neuromuscul Disord. 2004;14(1):51–5.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Gruhn KM, Heyer CM, Guttsches AK, Rehmann R, Nicolas V, Schmidt-Wilcke T, et al. Muscle imaging data in late-onset Pompe disease reveal a correlation between the pre-existing degree of lipomatous muscle alterations and the efficacy of long-term enzyme replacement therapy. Mol Genet Metab Rep. 2015;3:58–64.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Carlier PG, Azzabou N, de Sousa PL, Hicks A, Boisserie JM, Amadon A, et al. Skeletal muscle quantitative nuclear magnetic resonance imaging follow-up of adult Pompe patients. J Inherit Metab Dis. 2015;38(3):565–72.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Figueroa-Bonaparte S, Segovia S, Llauger J, Belmonte I, Pedrosa I, Alejaldre A, et al. Muscle MRI findings in childhood/adult onset pompe disease correlate with muscle function. PLoS One. 2016;11(10):e0163493.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Feeney EJ, Austin S, Chien YH, Mandel H, Schoser B, Prater S, et al. The value of muscle biopsies in Pompe disease: identifying lipofuscin inclusions in juvenile- and adult-onset patients. Acta Neuropathol Commun. 2014;2:2.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Genge A, Campbell N. Reevaluating muscle biopsies in the diagnosis of Pompe disease: a corroborative report. Can J Neurol Sci. 2016;43(4):561–6.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Vissing J, Lukacs Z, Straub V. Diagnosis of Pompe disease: muscle biopsy vs blood-based assays. JAMA Neurol. 2013;70(7):923–7.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Muller-Felber W, Horvath R, Gempel K, Podskarbi T, Shin Y, Pongratz D, et al. Late onset Pompe disease: clinical and neurophysiological spectrum of 38 patients including long-term follow-up in 18 patients. Neuromuscul Disord. 2007;17(9–10):698–706.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Goldstein JL, Young SP, Changela M, Dickerson GH, Zhang H, Dai J, et al. Screening for Pompe disease using a rapid dried blood spot method: experience of a clinical diagnostic laboratory. Muscle Nerve. 2009;40(1):32–6.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Fernandez C, de Paula AM, Figarella-Branger D, Krahn M, Giorgi R, Chabrol B, et al. Diagnostic evaluation of clinically normal subjects with chronic hyperCKemia. Neurology. 2006;66(10):1585–7.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Alejaldre A, Diaz-Manera J, Ravaglia S, Tibaldi EC, D’Amore F, Moris G, et al. Trunk muscle involvement in late-onset Pompe disease: study of thirty patients. Neuromuscul Disord. 2012;22(Suppl 2):S148–54.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Kim DG, Jung K, Lee MK, Hyun IG, Lim HJ, Song HG, et al. A case of juvenile form Pompe’s disease manifested as chronic alveolar hypoventilation. J Korean Med Sci. 1993;8(3):221–4.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Moufarrej NA, Bertorini TE. Respiratory insufficiency in adult-type acid maltase deficiency. South Med J. 1993;86(5):560–7.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Hagemans ML, Winkel LP, Hop WC, Reuser AJ, Van Doorn PA, Van der Ploeg AT. Disease severity in children and adults with Pompe disease related to age and disease duration. Neurology. 2005;64(12):2139–41.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Ambrosino N, Confalonieri M, Crescimanno G, Vianello A, Vitacca M. The role of respiratory management of Pompe disease. Respir Med. 2013;107(8):1124–32.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Kansagra S, Austin S, DeArmey S, Koeberl D, Kishnani PS. Death from supine asphyxia in late onset pompe disease: two patients. Am J Med Genet A. 2016;170(7):1928–9.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Chhabra SK. Forced vital capacity, slow vital capacity, or inspiratory vital capacity: which is the best measure of vital capacity? J Asthma. 1998;35(4):361–5.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Wokke JH, Escolar DM, Pestronk A, Jaffe KM, Carter GT, van den Berg LH, et al. Clinical features of late-onset Pompe disease: a prospective cohort study. Muscle Nerve. 2008;38(4):1236–45.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Eagle M, Baudouin SV, Chandler C, Giddings DR, Bullock R, Bushby K. Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul Disord. 2002;12(10):926–9.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Falsaperla R, Wenzel A, Pavone P, Di Mauro C, Vitaliti G. Polysomnographic evaluation of non-invasive ventilation in children with neuromuscular disease. Respirology (Carlton, Vic). 2014;19(1):80–4.CrossRefGoogle Scholar
  85. 85.
    Toussaint M, Steens M, Wasteels G, Soudon P. Diurnal ventilation via mouthpiece: survival in end-stage Duchenne patients. Eur Respir J. 2006;28(3):549–55.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Esposito S, Bruno C, Berardinelli A, Filosto M, Mongini T, Morandi L, et al. Vaccination recommendations for patients with neuromuscular disease. Vaccine. 2014;32(45):5893–900.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Wiegand V, Rumpf K, Bardosi A, Meinck H, Kreuzer H. Hemodynamic findings in the adult form of type II glycogenosis. Z Kardiol. 1986;75(1):44–6.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Francesconi M, Auff E, Ursin C, Sluga E. WPW syndrome combined with AV block 2 in an adult with glycogenosis (Type II). Wien Klin Wochenschr. 1982;94(15):401–4.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Fowler WM Jr. Role of physical activity and exercise training in neuromuscular diseases. Am J Phys Med Rehabil. 2002;81(11 Suppl):S187–95.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Slonim AE, Bulone L, Goldberg T, Minikes J, Slonim E, Galanko J, et al. Modification of the natural history of adult-onset acid maltase deficiency by nutrition and exercise therapy. Muscle Nerve. 2007;35(1):70–7.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Bodamer OA, Haas D, Hermans MM, Reuser AJ, Hoffmann GF. L-Alanine supplementation in late infantile glycogen storage disease type II. Pediatr Neurol. 2002;27(2):145–6.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Bodamer OA, Leonard JV, Halliday D. Dietary treatment in late-onset acid maltase deficiency. Eur J Pediatr. 1997;156(Suppl 1):S39–42.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Mobarhan S, Pintozzi RL, Damle P, Friedman H. Treatment of acid maltase deficiency with a diet high in branched-chain amino acids. JPEN J Parenter Enteral Nutr. 1990;14(2):210–2.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Umpleby AM, Wiles CM, Trend PS, Scobie IN, Macleod AF, Spencer GT, et al. Protein turnover in acid maltase deficiency before and after treatment with a high protein diet. J Neurol Neurosurg Psychiatry. 1987;50(5):587–92.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Ferrer X, Coquet M, Saintarailles J, Ellie E, Deleplanque B, Desnuelle C, et al. [Myopathy in adults caused by acid maltase deficiency. A trial of treatment with high protein diet]. La Revue de medecine interne/fondee par la Societe nationale francaise de. Med Interne. 1992;13(2):149–52.Google Scholar
  96. 96.
    Barton NW, Brady RO, Dambrosia JM, Di Bisceglie AM, Doppelt SH, Hill SC, et al. Replacement therapy for inherited enzyme deficiency--macrophage-targeted glucocerebrosidase for Gaucher's disease. N Engl J Med. 1991;324(21):1464–70.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Bijvoet AG, Kroos MA, Pieper FR, Van der Vliet M, De Boer HA, Van der Ploeg AT, et al. Recombinant human acid alpha-glucosidase: high level production in mouse milk, biochemical characteristics, correction of enzyme deficiency in GSDII KO mice. Hum Mol Genet. 1998;7(11):1815–24.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Yang CF, Yang CC, Liao HC, Huang LY, Chiang CC, Ho HC, et al. Very early treatment for infantile-onset Pompe disease contributes to better outcomes. J Pediatr. 2016;169:174–80. e1PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Capanoglu M, Dibek Misirlioglu E, Azkur D, Vezir E, Guvenir H, Gunduz M, et al. IgE-mediated hypersensitivity and desensitisation with recombinant enzymes in Pompe disease and type I and type VI mucopolysaccharidosis. Int Arch Allergy Immunol. 2016;169(3):198–202.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Chakrapani A, Vellodi A, Robinson P, Jones S, Wraith JE. Treatment of infantile Pompe disease with alglucosidase alpha: the UK experience. J Inherit Metab Dis. 2010;33(6):747–50.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    van Capelle CI, Winkel LP, Hagemans ML, Shapira SK, Arts WF, van Doorn PA, et al. Eight years experience with enzyme replacement therapy in two children and one adult with Pompe disease. Neuromuscul Disord. 2008;18(6):447–52.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Bach JR, Ishikawa Y, Kim H. Prevention of pulmonary morbidity for patients with Duchenne muscular dystrophy. Chest. 1997;112(4):1024–8.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Hahn A, Praetorius S, Karabul N, Diessel J, Schmidt D, Motz R, et al. Outcome of patients with classical infantile pompe disease receiving enzyme replacement therapy in Germany. JIMD Rep. 2015;20:65–75.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Van den Hout JM, Kamphoven JH, Winkel LP, Arts WF, De Klerk JB, Loonen MC, et al. Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk. Pediatrics. 2004;113(5):e448–57.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Ebbink BJ, Poelman E, Plug I, Lequin MH, van Doorn PA, Aarsen FK, et al. Cognitive decline in classic infantile Pompe disease: an underacknowledged challenge. Neurology. 2016;86(13):1260–1.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Rossi M, Parenti G, Della Casa R, Romano A, Mansi G, Agovino T, et al. Long-term enzyme replacement therapy for pompe disease with recombinant human alpha-glucosidase derived from chinese hamster ovary cells. J Child Neurol. 2007;22(5):565–73.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Winkel LP, Van den Hout JM, Kamphoven JH, Disseldorp JA, Remmerswaal M, Arts WF, et al. Enzyme replacement therapy in late-onset Pompe’s disease: a three-year follow-up. Ann Neurol. 2004;55(4):495–502.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Prater SN, Banugaria SG, DeArmey SM, Botha EG, Stege EM, Case LE, et al. The emerging phenotype of long-term survivors with infantile Pompe disease. Genet Med. 2012;14(9):800–10.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Ebbink BJ, Aarsen FK, van Gelder CM, van den Hout JM, Weisglas-Kuperus N, Jaeken J, Lequin MH, Arts WF, van der Ploeg AT. Cognitive outcome of patients with classic infantile Pompe disease receiving enzyme therapy. Neurology. 2012;78(19):1512–8.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Spiridigliozzi GA, Heller JH, Kishnani PS, Van der Ploeg AT, Ebbink BJ, Aarsen FK, et al. Cognitive outcome of patients with classic infantile Pompe disease receiving enzyme therapy. Neurology. 2013;80:1173.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    van der Beek NA, Verschuure H, Reuser AJ, van der Ploeg AT, van Doorn PA, Poublon RM. Hearing in adults with Pompe disease. J Inherit Metab Dis. 2012;35(2):335–41.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    van der Ploeg AT, Clemens PR, Corzo D, Escolar DM, Florence J, Groeneveld GJ, et al. A randomized study of alglucosidase alfa in late-onset Pompe’s disease. N Engl J Med. 2010;362(15):1396–406.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Strothotte S, Strigl-Pill N, Grunert B, Kornblum C, Eger K, Wessig C, et al. Enzyme replacement therapy with alglucosidase alfa in 44 patients with late-onset glycogen storage disease type 2: 12-month results of an observational clinical trial. J Neurol. 2010;257(1):91–7.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Merk T, Wibmer T, Schumann C, Kruger S. Glycogen storage disease type II (Pompe disease)--influence of enzyme replacement therapy in adults. Eur J Neurol. 2009;16(2):274–7.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Deroma L, Guerra M, Sechi A, Ciana G, Cisilino G, Dardis A, et al. Enzyme replacement therapy in juvenile glycogenosis type II: a longitudinal study. Eur J Pediatr. 2014;173(6):805–13.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Bembi B, Pisa FE, Confalonieri M, Ciana G, Fiumara A, Parini R, et al. Long-term observational, non-randomized study of enzyme replacement therapy in late-onset glycogenosis type II. J Inherit Metab Dis. 2010;33(6):727–35.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Vianello A, Semplicini C, Paladini L, Concas A, Ravaglia S, Servidei S, et al. Enzyme replacement therapy improves respiratory outcomes in patients with late-onset type II glycogenosis and high ventilator dependency. Lung. 2013;191(5):537–44.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Furusawa Y, Mori-Yoshimura M, Yamamoto T, Sakamoto C, Wakita M, Kobayashi Y, et al. Effects of enzyme replacement therapy on five patients with advanced late-onset glycogen storage disease type II: a 2-year follow-up study. J Inherit Metab Dis. 2012;35(2):301–10.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Kobayashi H, Shimada Y, Ikegami M, Kawai T, Sakurai K, Urashima T, et al. Prognostic factors for the late onset Pompe disease with enzyme replacement therapy: from our experience of 4 cases including an autopsy case. Mol Genet Metab. 2010;100(1):14–9.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Angelini C, Semplicini C, Ravaglia S, Moggio M, Comi GP, Musumeci O, et al. New motor outcome function measures in evaluation of late-onset Pompe disease before and after enzyme replacement therapy. Muscle Nerve. 2012;45(6):831–4.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Stepien KM, Hendriksz CJ, Roberts M, Sharma R. Observational clinical study of 22 adult-onset Pompe disease patients undergoing enzyme replacement therapy over 5years. Mol Genet Metab. 2016;117(4):413–8.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Kishnani PS, Goldenberg PC, DeArmey SL, Heller J, Benjamin D, Young S, et al. Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab. 2010;99(1):26–33.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Messinger YH, Mendelsohn NJ, Rhead W, Dimmock D, Hershkovitz E, Champion M, et al. Successful immune tolerance induction to enzyme replacement therapy in CRIM-negative infantile Pompe disease. Genet Med. 2012;14(1):135–42.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Genzyme. Genzyme Pompe Community Program Update WorldPompe.org2015. Available from: http://www.worldpompe.org/images/pdfs/Genzyme_2015-04-10_Pompe_Awareness_Day_Final.pdf
  125. 125.
    Sanofi. Study to compare the efficacy and safety of enzyme replacement therapies neoGAA and alglucosidase alfa administered every other week in patients with late-onset pompe disease who have not been previously treated for Pompe disease (COMET): Clinical Trials.gov; 2016 [15th of November 2016]. Available from: https://clinicaltrials.gov/ct2/show/NCT02782741.
  126. 126.
    Doerfler PA, Nayak S, Corti M, Morel L, Herzog RW, Byrne BJ. Targeted approaches to induce immune tolerance for Pompe disease therapy. Mol Ther Methods Clin Dev. 2016;3:15053.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    van Gelder CM, Poelman E, Plug I, Hoogeveen-Westerveld M, van der Beek NA, Reuser AJ, et al. Effects of a higher dose of alglucosidase alfa on ventilator-free survival and motor outcome in classic infantile Pompe disease: an open-label single-center study. J Inherit Metab Dis. 2016;39(3):383–90.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Martina JA, Diab HI, Lishu L, Jeong-A L, Patange S, Raben N, et al. The nutrient-responsive transcription factor TFE3, promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal. 2014, 7(309):ra9-ra.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, The International Centre for Life, Newcastle UniversityNewcastle Upon TyneUK

Personalised recommendations