Neuroimaging of Inherited Metabolic Diseases of Adulthood

  • Renzo ManaraEmail author
  • Alessandro P. Burlina


The chapter deals with neuroimaging in inherited metabolic diseases that may onset in adulthood or may be diagnosed in the pediatric age but are expected to reach adulthood. Inherited metabolic diseases in adulthood rarely present with overt metabolic decompensation, being an insidious onset more common. Neuroimaging is therefore considered not only for identifying diagnostic lesion patterns but also in the search for, disease-related complications, preclinical signs of involvement or evidence of treatment efficacy. Among the diagnostic tools, routine magnetic resonance imaging is surely the most powerful for characterizing brain involvement, while unenhanced computed tomography is mostly limited to the management of acute complications that often overlap with those observed among normal aging population. For this reason, the chapter mainly focuses on MRI brain abnormalities useful for the diagnostic work-up or the follow-up, while advanced MRI techniques are mentioned only in those rare conditions where they might provide clinically useful patient-tailored hints.


Neuroimaging of inherited metabolic disease Metabolic disease imaging Inherited metabolic disease X-linked adrenoleukodystrophy Alexander disease Cobalamin C deficiency GALT deficiency Phenylketonuria Mitochondrial diseases Mucopolysaccharidoses 


  1. 1.
    Osborn AG. Osborn’s brain: imaging, pathology, and anatomy. Salt Lake City: Amirsys Publishing Inc.; 2012.Google Scholar
  2. 2.
    Engelen M, Kemp S, de Visser M, van Geel B, Wanders RJA, Aubourg P, Poll-The BT. X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J Rare Dis. 2012;7:51.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Eichler F, Mahmood A, Loes D, Bezman L, Lin D, Moser HW, Raymond GV. Magnetic resonance imaging detection of lesion progression in adult patients with X-linked adrenoleukodystrophy. Arch Neurol. 2007;64(5):659–64.CrossRefPubMedGoogle Scholar
  4. 4.
    Kumar AJ, Köhler W, Kruse B. MR findings in adult-onset adrenoleukodystrophy. Am J Neuroradiol. 1995;16:1227–37.PubMedGoogle Scholar
  5. 5.
    Krishna SH, McKinney AM, Lucato LT. Congenital genetic inborn errors of metabolism presenting as an adult or persisting into adulthood: neuroimaging in the more common or recognizable disorders. Semin Ultrasound CT MR. 2014;35(2):160–91.CrossRefPubMedGoogle Scholar
  6. 6.
    de Beer M, Engelen M, van Geel BM. Frequent occurrence of cerebral demyelination in adrenomyeloneuropathy. Neurology. 2014;83(24):2227–31.CrossRefPubMedGoogle Scholar
  7. 7.
    Moser HW, Loes DJ, Melhem ER, Raymond GV, Bezman L, Cox CS, Lu SE. X-linked adrenoleukodystrophy: overview and prognosi as a function of age and brain magnetic resonance imaging abnormality. A study involving 372 patients. Neuropediatrics. 2000;31:227–39.CrossRefPubMedGoogle Scholar
  8. 8.
    Farina L, Pareyson D, Minati L, Ceccherini I, Chiapparini L, Romano S, et al. Can MR imaging diagnose adult-onset Alexander disease ? Am J Neuroradiol. 2008;29:1190–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Nelson MD Jr, Wolff JA, Cross CA, Donnell GN, Kaufman FR. Galactosemia: evaluation with MR imaging. Radiology. 1992;184(1):255–61.CrossRefPubMedGoogle Scholar
  10. 10.
    van der Knaap M, Valk J. Magnetic resonance of myelination and myelin disorders. 3rd ed. Berlin: Springer; 2005.CrossRefGoogle Scholar
  11. 11.
    Sundal C, Van Gerpen JA, Nicholson AM, et al. MRI characteristics and scoring in HDLS due to CSF1R gene mutations. Neurology. 2012;79:566–74.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Abdel Razek AA, Abd El-Gaber N, Abdalla A, Fathy A, Azab A, Rahman AA. Apparent diffusion coefficient vale of the brain in patients with Gaucher’s disease type II and type III. Neuroradiology. 2009;51:773.CrossRefPubMedGoogle Scholar
  13. 13.
    Debs R, Froissart R, Aubourg P, et al. Krabbe disease in adults: phenotypic and genotypic update from a series of 11 cases and a review. J Inherit Metab Dis. 2013;36:859–68.CrossRefPubMedGoogle Scholar
  14. 14.
    Schuster J, Sundblom J, Thuresson AC, Hassin-Baer S, Klopstock T, Dichgans M, Cohen OS, Raininko R, Melberg A, Dahl N. Genomic duplications mediate overexpression of lamin B1 in adult-onset autosomal dominant leukodystrophy (ADLD) with autonomic symptoms. Neurogenetics. 2011;12(1):65–72.CrossRefPubMedGoogle Scholar
  15. 15.
    Groeschel S, Kehrer C, Engel C, Dali C I, Bley A, Steinfeld R, Grodd W, Krägeloh-Mann I. Metachromatic leukodystrophy: natural course of cerebral MRI changes in relation to clinical course. J Inherit Metab Dis. 2011;34(5):1095–102.CrossRefPubMedGoogle Scholar
  16. 16.
    Karimzadeh P, Ahmadabadi F, Jafari N, Shariatmadari F, Nemati H, Ahadi A, Karimi Dardashti S, Mirzarahimi M, Dastborhan Z, Zare Noghabi J. Study on MRI changes in phenylketonuria in patients referred to Mofid Hospital/Iran. Iran J Child Neurol. 2014;8(2):53–6.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Thompson AJ, Tillotson S, Smith I, Kendall B, Moore SG, Brenton DP. Brain MRI changes in phenylketonuria. Associations with dietary status. Brain. 1993;116(Pt 4):811–21.CrossRefPubMedGoogle Scholar
  18. 18.
    Anderson PJ, Leuzzi V. White matter pathology in phenylketonuria. Mol Genet Metab. 2010;99(Suppl 1):S3–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Manara R, Burlina AP, Citton V, Ermani M, Vespignani F, Carollo C, Burlina AB. Brain MRI diffusion-weighted imaging in patients with classical phenylketonuria. Neuroradiology. 2009;51:803–12.CrossRefPubMedGoogle Scholar
  20. 20.
    Mastrangelo M, Chiarotti F, Berillo L, Caputi C, Carducci C, Di Biasi C, Manti F, Nardecchia F, Leuzzi V. The outcome of white matter abnormalities in early treated phenylketonuric patients: a retrospective longitudinal long-term study. Mol Genet Metab. 2015;116(3):171–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Bodner KE, Aldridge K, Moffitt AJ, Peck D, White DA, Christ SE. A volumetric study of basal ganglia structures in individuals with early-treated phenylketonuria. Mol Genet Metab. 2012;107:302–7.CrossRefPubMedGoogle Scholar
  22. 22.
    van der Lei HD, Steenweg ME, Bugiani M, Pouwels PJ, Vent IM, Barkhof F, et al. Restricted diffusion in vanishing white matter. Arch Neurol. 2012;69:723–7.PubMedGoogle Scholar
  23. 23.
    Burlina A, Manara R. MRI and in vivo spectroscopy of the brain. In: Blau N, Duran M, Gibson KM, Dionisi-Vici C, editors. Physician’s guide to the diagnosis, treatment, and follow-up of inherited metabolic diseases. Berlin: Springer; 2014.Google Scholar
  24. 24.
    Sproule DM, Wong L, Hirano M, Pavlakis SG. Stroke-like episodes in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). In: Sharma P, Meschia JF, editors. Stroke genetics. London: Springer; 2013. p. 107–25.CrossRefGoogle Scholar
  25. 25.
    Chang CL, Lin CM. eye-of-the-tiger sign is not pathognomonic of pantothenate kinase-associated neurodegeneration in adult cases. Brain Behav. 2011;1(1):55–6.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hermann W. Morphological and functional imaging in neurological and non-neurological Wilson’s patients. Ann N Y Acad Sci. 2014;1315:24–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Shivakumar R, Thomas SV. Teaching NeuroImages: face of the giant panda and her cub: MRI correlates of Wilson disease. Neurology. 2009;72(11):e50.CrossRefPubMedGoogle Scholar
  28. 28.
    Fellgiebel A, Keller I, Martus P, Ropele S, Yakushev I, Böttcher T, et al. Basilar artery diameter is a potential screening tool for Fabry disease in young stroke patients. Cerebrovasc Dis. 2011;31:294–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Manara R, Carlier RY, Righetto S, Citton V, Locatelli G, Colas F, Ermani M, Germain DP, Burlina A. Basilar artery changes in Fabry disease. AJNR Am J Neuroradiol. 2017;38(3):531–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Ginsberg L, Manara R, Valentine AR, Kendall B, Burlina AP. Magnetic resonance imaging changes in Fabry disease. Acta Paediatr. 2006;95(Suppl 451):57–62.CrossRefGoogle Scholar
  31. 31.
    Böttcher T, Rolfs A, Tanislav C, Bitsch A, Köhler W, Gaedeke J, Giese AK, Kolodny EH, Duning T. Fabry disease—underestimated in the differential diagnosis of multiple sclerosis? PLoS One. 2013;8(8):e71894.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Takanashi J, Barkovich AJ, Dillon WP, Sherr EH, Hart KA, Packman S. T1 hyperintensity in the pulvinar: key imaging feature for diagnosis of Fabry disease. AJNR Am J Neuroradiol. 2003;24(5):916–21.PubMedGoogle Scholar
  33. 33.
    Burlina AP, Politei J, Cinque S, Soliani A, Carlier RY, Germain DP, Manara R. The pulvinar sign in Fabry patients: the first report in female patients. J Neurol. 2012;259:1227–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Burlina AP, Manara R, Caillaud C, Laissy J-P, Severino M, Klein I, et al. The pulvinar sign: frequency and clinical correlations in Fabry disease. J Neurol. 2008;255:738–44.CrossRefPubMedGoogle Scholar
  35. 35.
    Germain DP, Benistan K, Halimi P. Chiari type I malformation in four unrelated patients affected with Fabry disease. Eur J Med Genet. 2006;49(5):419–25.CrossRefPubMedGoogle Scholar
  36. 36.
    Radmanesh A, Zaman T, Ghanaati H, Molaei S, Robertson RL, Zamani AA. Methylmalonic acidemia: brain imaging findings in 52 children and a review of the literature. Pediatr Radiol. 2008;38(10):1054–61.CrossRefPubMedGoogle Scholar
  37. 37.
    Citton V, Burlina A, Baracchini C, Gallucci M, Catalucci A, Dal Pos S, et al. Apparent diffusion coefficient restriction in the white matter: going beyond acute brain territorial ischemia. Insights Imaging. 2012;3:155–64.CrossRefPubMedGoogle Scholar
  38. 38.
    Harting I, Neumaier-Probst E, Seitz A, Maier EM, Assmann B, Baric I, et al. Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I. Brain. 2009;132:1764–82.CrossRefPubMedGoogle Scholar
  39. 39.
    Manara R, Priante E, Grimaldi M, Santoro L, Astarita L, Barone R, et al. Brain and spine MRI features of Hunter disease: frequency, natural evolution and response to therapy. J Inherit Metab Dis. 2011;34:763–80.CrossRefPubMedGoogle Scholar
  40. 40.
    Borlot F, Arantes PR, Quaio CR, Franco JF, Lourenço CM, Gomy I, Bertola DR, Kim CA. Mucopolysaccharidosis type IVA: evidence of primary and secondary central nervous system involvement. Am J Med Genet A. 2014;164A(5):1162–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Borlot F, Arantes PR, Quaio CR, Franco JF, Lourenço CM, Bertola DR, Kim CA. New insights in mucopolysaccharidosis type VI: neurological perspective. Brain Dev. 2014;36(7):585–92.CrossRefPubMedGoogle Scholar
  42. 42.
    Azevedo AC, Artigalás O, Vedolin L, Komlós M, Pires A, Giugliani R, Schwartz IV. Brain magnetic resonance imaging findings in patients with mucopolysaccharidosis VI. J Inherit Metab Dis. 2013;36(2):357–62.CrossRefPubMedGoogle Scholar
  43. 43.
    Vedolin L, Schwartz IV, Komlos M, Schuch A, Azevedo AC, Vieira T, et al. Brain MRI in mucopolysaccharidosis: effect of aging and correlation with biochemical findings. Neurology. 2007;69:917–24.CrossRefPubMedGoogle Scholar
  44. 44.
    Vedolin L, Schwartz IV, Komlos M, Schuch A, Puga AC, Pinto LL, Pires AP, Giugliani R. Correlation of MR imaging and MR spectroscopy findings with cognitive impairment in mucopolysaccharidosis II. AJNR Am J Neuroradiol. 2007;28(6):1029–33.CrossRefPubMedGoogle Scholar
  45. 45.
    Tanaka A, Okuyama T, Suzuki Y, Sakai N, Takakura H, Sawada T, Tanaka T, Otomo T, Ohashi T, Ishige-Wada M, Yabe H, Ohura T, Suzuki N, Kato K, Adachi S, Kobayashi R, Mugishima H, Kato S. Long-term efficacy of hematopoietic stem cell transplantation on brain involvement in patients with mucopolysaccharidosis type II: a nationwide survey in Japan. Mol Genet Metab. 2012;107(3):513–20.CrossRefPubMedGoogle Scholar
  46. 46.
    Shapiro E, Guler OE, Rudser K, Delaney K, Bjoraker K, Whitley C, Tolar J, Orchard P, Provenzale J, Thomas KM. An exploratory study of brain function and structure in mucopolysaccharidosis type I: long term observations following hematopoietic cell transplantation (HCT). Mol Genet Metab. 2012;107(1–2):116–21.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Shapiro EG, Nestrasil I, Delaney KA, Rudser K, Kovac V, Nair N, Richard CW 3rd, Haslett P, Whitley CB. A prospective natural history study of mucopolysaccharidosis type IIIA. J Pediatr. 2016;170:278–87.e1–4.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Fan Z, Styner M, Muenzer J, Poe M, Escolar M. Correlation of automated volumetric analysis of brain MR imaging with cognitive impairment in a natural history study of mucopolysaccharidosis II. AJNR Am J Neuroradiol. 2010;31(7):1319–23.CrossRefPubMedGoogle Scholar
  49. 49.
    Palmucci S, Attinà G, Lanza ML, Belfiore G, Cappello G, Foti PV, Milone P, Di Bella D, Barone R, Fiumara A, Sorge G, Ettorre GC. Imaging findings of mucopolysaccharidoses: a pictorial review. Insights Imaging. 2013;4(4):443–59.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Hayes E, Babin R, Platz C. The otologic manifestations of mucopolysaccharidoses. Am J Otol. 1980;2(2):65–9.PubMedGoogle Scholar
  51. 51.
    Kantaputra PN, Kayserili H, Güven Y, Kantaputra W, Balci MC, Tanpaiboon P, Uttarilli A, Dalal A. Oral manifestations of 17 patients affected with mucopolysaccharidosis type VI. J Inherit Metab Dis. 2014;37(2):263–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Alqahtani E, Huisman TA, Boltshauser E, Scheer I, Güngör T, Tekes A, Maegawa GH, Poretti A. Mucopolysaccharidoses type I and II: new neuroimaging findings in the cerebellum. Eur J Paediatr Neurol. 2014;18(2):211–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Arn P, Whitley C, Wraith JE, Webb HW, Underhill L, Rangachari L, Cox GF. High rate of postoperative mortality in patients with mucopolysaccharidosis I: findings from the MPS I Registry. J Pediatr Surg. 2012;47(3):477–84.CrossRefPubMedGoogle Scholar
  54. 54.
    Aliabadi H, Reynolds R, Powers CJ, Grant G, Fuchs H, Kurtzberg J. Clinical outcome of cerebrospinal fluid shunting for communicating hydrocephalus in mucopolysaccharidoses I, II, and III: a retrospective analysis of 13 patients. Neurosurgery. 2010;67(6):1476–81; discussion 1481–2.CrossRefPubMedGoogle Scholar
  55. 55.
    Gabrielli O, Polonara G, Regnicolo L, Petroni V, Scarabino T, Coppa GV, Salvolini U. Correlation between cerebral MRI abnormalities and mental retardation in patients with mucopolysaccharidoses. Am J Med Genet A. 2004;125A(3):224–31.CrossRefPubMedGoogle Scholar
  56. 56.
    Barone R, Parano E, Trifiletti RR, Fiumara A, Pavone P. White matter changes mimicking a leukodystrophy in a patient with Mucopolysaccharidosis: characterization by MRI. J Neurol Sci. 2002;195(2):171–5.CrossRefPubMedGoogle Scholar
  57. 57.
    Suppiej A, Rampazzo A, Cappellari A, Traverso A, Tormene AP, Pinello L, Scarpa M. The role of visual electrophysiology in mucopolysaccharidoses. J Child Neurol. 2013;28(10):1203–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Käsmann-Kellner B, Weindler J, Pfau B, Ruprecht KW. Ocular changes in mucopolysaccharidosis IV A (Morquio A syndrome) and long-term results of perforating keratoplasty. Ophthalmologica. 1999;213(3):200–5.CrossRefPubMedGoogle Scholar
  59. 59.
    Neuhauser EB, Griscom NT, Gilles FH, Crocker AC. Arachnoid cysts in the Hurler-Hunter syndrome. Ann Radiol (Paris). 1968;11(5):453–69.Google Scholar
  60. 60.
    Petitti N, Holder CA, Williams DW 3rd. Mucopolysaccharidosis III (Sanfilippo syndrome) type B: cranial imaging in two cases. J Comput Assist Tomogr. 1997;21(6):897–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Makler V, Goldstein CL, Hoernschemeyer D, Tanaka T. Chiari I malformation and syringomyelia in mucopolysaccharidosis type I (Hurler syndrome) treated with posterior fossa decompression: case report and review of the literature. Surg Neurol Int. 2017;8:80.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kurihara A, Takanashi JI, Tomita M, Kobayashi K, Ogawa A, Kanazawa M, et al. Magnetic resonance imaging in late-onset ornithine transcarbamylase deficiency. Brain Dev. 2003;25:40–4.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.NeuroradiologyUniversity of SalernoSalernoItaly
  2. 2.Neurological Unit, St Bassiano HospitalBassano del GrappaItaly

Personalised recommendations