Advertisement

Late Cenozoic to Modern-Day Volcanism in the Northern Andes: A Geochronological, Petrographical, and Geochemical Review

  • M. I. Marín-Cerón
  • H. Leal-Mejía
  • M. Bernet
  • J. Mesa-García
Part of the Frontiers in Earth Sciences book series (FRONTIERS)

Abstract

The Northern Andean Block is the result of complex tectonic interaction between the Farallon-Nazca, South American, and Caribbean Plates. Abundant late Cenozoic volcanism (and associated hypabyssal porphyritic plutonism), beginning in the mid- to late Miocene, is the result of subduction-related mantle-derived magmatic activity, superimposed upon a compositionally varied and structurally complex basement during the late stages of the Northern Andean orogeny. Tectonic consolidation and subduction of the segmented Nazca Plate during the late Miocene-Pliocene led to conformation of the modern-day Colombian segment of the Northern Andean Volcanic Zone. The Colombian arc segment represents the northernmost expression of subduction-related volcanism within South America’s Andean Cordillera.

Keywords

Northern Andean Volcanic Zone Late Cenozoic magmatism Subduction zone Nazca Plate Slab decarbonation Subduction component Lower crust Andesite formation 

Abbreviations

ACPB

Amagá-Cauca-Patía

AFC

Assimilations by fractional crystallization

AFM

Diagram alkali-iron-magnesium

AFS

Algeciras fault system

AOC

Altered oceanic crust

AVZ

Austral Volcanic Zone

BAU

Baudó terrane

Ca

(circa) Approximately

CAM

Caribbean mountain terrane

CA-VA

Cajamarca-Valdivia terrane

CC

Central Cordillera

CET

Colombia-Ecuador trench

CG

Cañasgordas terrane

CS

Carbonate-rich sediments

CV

Cauca Valley

CVZ

Central Volcanic Zone

DA

Dagua terrane

E

East

E.g.

For example (exempli gratia)

EC

Eastern Cordillera

ENE

East northeast

Et al

And others (et alia)

Fig

Figure

Fm.

Formation

GA

Macizo de Garzón

GOR

Gorgona terrane

GPa

GigaPascal

GU-FA

Guajira-Falcón terranes

HFS

High-field strength

HFSE

High-field-strength elements

HIMU

High U/Pb mantle

HREE

Heavy rare earth elements

HS

Hemipelagic sediments

I.E

In essence (id est)

K

Cretaceous

Km

Kilometers

LCC

Lower continental crust

LIL

Large-ion lithophile

LILE

Large-ion lithophile elements

LREE

Light rare earth elements

Ma

Mega-annum

MMB

Middle Magdalena Basin

MORB

Mid-ocean-ridge basalt

MSP

Maracaibo subplate

N

Neogene

NAB

Northern Andean Block

NE

Northeast

NNE

North northeast

NVZ

Northern Volcanic Zone

NW

Northwest

OIB

Ocean island basalt

P

Paleogene

P

Pressure

PA

Panamá terrane

Pa

Pascal

PCB

Panamá-Chocó Block

Pz

Paleozoic

RA

Rear arc

REE

Rare earth element

RO

Romeral terrane

SE

Southeast

SJ

San Jacinto terrane

SL

San Lucas Block

SM

Sierra Nevada de Santa Marta

SN

Sinú terrane

SS

Subducted sediments

SVZ

South Volcanic Zone

SW

Southwest

T

Temperature

TAS

Total alkali-silica

UCC

Upper continental crust

VF

Volcanic front

W

West

WBZ

Wadati-Benioff zone

WC

Western Cordillera

WSW

West southwest

References

  1. Annen C, Blundy JD, Sparks RS (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539Google Scholar
  2. Álvarez A (1983) Geología de la cordillera Central y el Occidente colombiano y petroquímica de los intrusivos granitoides Mesocenozoicos. Boletín Geológico, vol 26, p 175, BogotáGoogle Scholar
  3. Álvarez J (1987) Mapa metalogénico de las fajas ofiolíticas de la zona occidental de Colombia. Ingeominas, Bogotá, Informe No. 2024, p 41Google Scholar
  4. Aspden JA, McCourt WJ (1986) Mesozoic oceanic terrane in the Central Andes of Colombia. Geology 14:415–418Google Scholar
  5. Aspden JA, McCourt WJ, Brook M (1987) Geometrical control of subduction-related magmatism: the Mesozoic and Cenozoic plutonic history of Western Colombia. J Geol Soc Lond 144:893–905Google Scholar
  6. Barragan R, Geist D, Hall M, Larson P, Kurz M (1998) Subduction controls on the compositions of lavas from the Ecuadorian Andes. Earth Planet Sci Lett 154(1–4):153–166Google Scholar
  7. Barret TJ, Taylor PN, Lugowski J (1987) Metalliferous sediments from DSDP leg 92: The East Pacific Rise transects. Geochim Cosmochim Acta 46:651–666Google Scholar
  8. Bernet M, Urueña C, Amaya S, Peña ML (2016) New thermo and geochronological constraints on the Pliocene-Pleistocene eruption history of the Paipa-Iza volcanic complex, Eastern Cordillera, Colombia. J Volcanol Geotherm Res 327:299–309.  https://doi.org/10.1016/j.jvolgeores.2016.08.013 Google Scholar
  9. Bissig T, Mantilla FL, Rodríguez A, Raley Ch, Hart C. (2012) The Vetas-California district, eastern Cordillera, Santander, Colombia: Late Miocene porphyry and epithermal mineralization hosted in Proterozoic gneisses and Late Triassic intrusions. Abstract. XVI Peruvian Geological Congress & SEG Conference. Lima, PerúGoogle Scholar
  10. Bohórquez O, Monsalve ML, Velandia F, Gil-Cruz F, Mora H (2005) Determinación del Marco Tectónico Regional para la Cadena Volcánica más Septentrional de la Cordillera Central de Colombia. Boletín de Geología, UIS, vol 27/44, p 55–79Google Scholar
  11. Bourdon E, Eissen JP, Gutscher MA, Monzier M, Hall M, Cotten J (2003) Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case (South America). Earth Planet Sci Lett 205(3–4).  https://doi.org/10.1016/S0012-821X(02)01024-5
  12. Borrero C, Castillo H (2006) Vulcanitas del S-SE de Colombia: retro-arco Alcalino y su posible relacion con una ventana Astenosferica. Boletín de Geología vol 28/2, p 24–34Google Scholar
  13. Borrero C, Toro LM, Alvarán M, Castillo H (2009) Geochemistry and tectonic controls of the effusive activity related with the ancestral Nevado del Ruiz volcano, Colombia. Geofísica Internacional, vol 48/1, p 149–169Google Scholar
  14. Bryant JA, Yogodzinski GM, Hall ML, Lewicki JL, Bailey DG (2006) Geochemical constraints on the origin of volcanic rocks from the Andean Northern Volcanic Zone, Ecuador. J Petrol 47(6):1147–1175Google Scholar
  15. Calvache M, Cortés P, Williams S (1997) Stratigraphy and chronology of the Galeras Volcanic Complex, Colombia. J Volcanol Geotherm Res 77:5–19Google Scholar
  16. Calvache ML, Williams S (1997a) Geochemistry and petrology of the Galeras Volcanic Complex, Colombia. J Volcanol Geotherm Res 77:21–38Google Scholar
  17. Calvache ML, Williams S (1997b) Emplacement and petrological evolution of the andesitic dome of Galeras. J Volcanol Geotherm Res 77:57–59Google Scholar
  18. Campbell CJ (1974) Colombian Andes. In: Spencer AM (ed.) Mesozoic and Cenozoic Orogenic Belts. Special Publication of the Geological Society, London, vol 4, p 705–771Google Scholar
  19. Cediel F (2018) Phanerozoic orogens of Northwestern South America: cordilleran-type orogens, taphrogenic tectonics and orogenic float. Springer, Cham, pp. 3–89Google Scholar
  20. Cediel F, Etayo F, Cáceres C (1997) Distribución de facies sedimentarias y su marco tectónico durante el Fanerozoico en Colombia. VI Simposio Bolivariano, Exploración petrolera en las cuencas Subandinas, CartagenaGoogle Scholar
  21. Cediel F, Shaw RP, Cáceres C (2003) Tectonic assembly of the Northern Andean Block. In Bartolini C, Buffler RT, Blickwede J (eds) The Circum-Gulf of Mexico and the Caribbean: hydrocarbon habitats, basin formation, and plate tectonics.– AAPG Memoir 79, p 815–848Google Scholar
  22. Cediel F, Leal-Mejía H, Shaw RP, Melgarego JC, Restrepo-Pace PA (2011) Petroleum geology of Colombia: regional geology of Colombia. ANH – Colombia. 1: 220Google Scholar
  23. Cepeda H, Pardo N, Jaramillo J (2004) The Paipa volcano, Colombia, South America. IAVCEI meeting Poster Session. November 14–19, Pucón, ChileGoogle Scholar
  24. Cepeda H, Pardo N (2004) Vulcanismo de Paipa. Informe técnico. INGEOMINAS-Bogota. Colombia. 140 pGoogle Scholar
  25. Chiaradia M, Fontboté L, Beate B (2004) Cenozoic continental arc magmatism and associated mineralization in Ecuador. Mineral Deposita 39:204–222Google Scholar
  26. Correa AM, Cepeda H, Pulgarín B, Ancoches E (2000) El volcán Nevado del Huila (Colombia): rasgos generales y caracterización composicional. Geogaceta 27:51–54Google Scholar
  27. Cox KG, Bell JD, Pankhurst RJ (1979) The Interpretation of Igneous Rocks: London, George Allen & Unwin, p 464Google Scholar
  28. Dasch EJ (1981) Lead isotopic composition of metalliferous sediments from the Nazca Plate. Mem Geol Soc Am 154:199–209Google Scholar
  29. Dasgupta R, Hirschmann MM, Withers AC (2004) Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett 227:73–85Google Scholar
  30. Davidson JP, de Silva SL (1992) Volcanic rocks from the Bolivian Altiplano: Insights into crustal structure, contamination, and magma genesis in the central Andes. Geology 20:1127–1130Google Scholar
  31. Defant M, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665Google Scholar
  32. De Paolo DJ (1981) Trace-element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202Google Scholar
  33. de Silva S (1991) Styles of zoning in Central Andean ignimbrites-insights into magma chamber processes: In: Andean magmatism and its tectonic setting. Special paper 265, pp 217–232Google Scholar
  34. Droux A, Delaloye M (1996) Petrography and Geochemistry of Plio-Quaternary Calc-Alkaline volcanoes of Southwestern Colombia. J S Am Earth Sci 1–2:27–41Google Scholar
  35. Duque-Caro H (1990) The Choco Block in the northwestern corner of South America: Structural, tectonostratigraphic, and paleogeographic implications. J S Am Earth Sci 3:71–84Google Scholar
  36. Duque JF, Toro GE, Cardona A, Calvache M (2010) Geología, geocronología y geoquímica del volcán Morasurco, Pasto, Colombia. Boletín de Ciencias de la Tierra 27:25–36Google Scholar
  37. Estrada JJ, Viana R, González H (2001) Memoria Explicativa del Mapa Geológico de la Plancha 205 – Chinchiná. Escala 1:100.000. INGEOMINAS, p 92Google Scholar
  38. Etayo-Serna F, Barrero D, Lozano HQ, Espinosa A, Gonzalez H, Orrego A, Ballesteros IT, Forero,HO, Ramirez CQ, Zambrano-Ortiz F, Duque-Caro H, Vargas RH, Nuñez A, Alvarez, JA, Ropain UC, Cardozo EP, Galvis N, Sarmiento LR, Albers JP, Case JE, Singer DA, Bowen RW, Berger BR, Cox DP, Hodges CA (1986) Mapa de terrenos geológicos de Colombia. Bogotá. Publicaciones Geológicas Especiales del INGEOMINAS, vol 14/1, p 235Google Scholar
  39. Eggler DH (1972) Amphibole stability in H2O-undersaturated calc- alkaline melts. Earth Planet Sci Lett 15:38–44Google Scholar
  40. Farris DW, Jaramillo C, Bayona G, Restrepo-Moreno SA, Montes C, Cardona A, Mora A, Speakman RJ, Glascock MD, Valencia V (2011) Fracturing of the Panamanian Isthmus during initial collision with South America. Geology 39(11):1007–1010Google Scholar
  41. Feineman MD, Ryerson FJ, DePaolo DJ, Plank T (2007) Zoisite-aqueous fluid trace element partitioning with implications for subduction zone fluid composition. Chem Geol.  https://doi.org/10.1016/j.chemgeo.2007.01.008
  42. Frey FA, Gerlach DC, Hickey RL, López-Escobar L, Minizaga-Villavicencio F (1984) Petrogenesis of the Laguna del Maule volcanic complex, Chile (36°S). Contrib. Mineral Petrol 88:133–149Google Scholar
  43. Foden JD, Green TH (1992) Possible role of amphibole in the origin of andesite: some experimental and natural evidence. Contrib Mineral Petrol 109:479–493Google Scholar
  44. Garrison J, Davidson J, Reid M, Turner S (2006) Source versus differentiation controls on U-series disequilibria: Insights from Cotopaxi Volcano, Ecuador. Earth Planet Sci Lett 244:548–565Google Scholar
  45. Gill JB (1981) Orogenic Andesites and Plate Tectonics, vol 16. Springer, Berlin HeidelbergGoogle Scholar
  46. Gómez J, Nivia A, Montes NE, Tejada ML, Jiménez DM, Sepúlveda MJ, Mora MP (2007) Mapa Geológico de Colombia escala 1: 1.000.000. Ingeomina, BogotáGoogle Scholar
  47. González H (2001) Memoria Explicativa del Mapa Geológico del Departamento de Antioquia. Escala 1:400.000. Medellín, Ingeomina, Bogotá, p 240Google Scholar
  48. Gorman P J,. Kerrick DM, Connolly JAD (2006) Modeling open system metamorphic decarbonation of subductingslabs, Geochem. Geophys. Geosyst.,7(4): 21, doi:10.1029/2005GC001125Google Scholar
  49. Grosse E (1926) Estudio Geológico del Terciario carbonífero de Antioquia en la parte occidental de la Cordillera Central de Colombia: Berlín, Verlag Von Dietrich Reimer, p 361Google Scholar
  50. Gutscher MA, Malavielle J, Lallemand S, Collot JY (1999a) Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth Planet Sci Lett 170(1–2):155–156Google Scholar
  51. Gutscher R, Malavieielle J, Lallemend S, Collot JY (1999b) Tectonic segmentation of the North Andean margin: Impact of the Carnegie ridge collision. Earth Planet Sci Lett 168:255–270Google Scholar
  52. Hall ML, Samaniego P, Le Pennec JL, Johnson JB (2008) Ecuadorian Andes volcanism: A review of Late Pliocene to present activity. J Volcanol Geotherm Res 176:1–6Google Scholar
  53. Hammersley L (2003) The Chalupas caldera. PhD Dissertation. Univ. California, BerkeleyGoogle Scholar
  54. Hammouda T (2003) High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett 214:357–368Google Scholar
  55. Harmon RS, Barreiro BA, Moorbarth S, Hoefs J, Francis PW, Thorpe RS, Deruelle B, McHugh J, Virglino JA (1984) Regional O, Sr and Pb-isotope relationships in late Cenozoic calc-alkaline lavas of the Andean Cordillera. J Geol Soc Lond 141:803–822Google Scholar
  56. Hardy N (1991) Tectonic evolution of the easternmost Panama Basin. J S Am Earth Sci 4:261–270Google Scholar
  57. Hawkesworth CJ, Norry MJ, Roddick JC, Baker PE, Francis PW, Thorpe RS (1979) 143Nd/144Nd, 87Sr/86Sr, and incompatible trace element variations in calc-alkaline andesitic and plateau lavas from South America. Earth Planet Sci Lett 42:45–57Google Scholar
  58. Hickey RL, Frey FA, Gerlach DC, López-Escobar L (1986) Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34° – 41° S): Trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust. J Geophys Res 91(B6):5963–5983Google Scholar
  59. Hildreth W, Moorbath S (1988) Crustal contribution to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489Google Scholar
  60. Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8(5):523–548Google Scholar
  61. James DE (1982) A combined O, Sr, Nd, and Pb isotopic and trace element study of crustal contamination in central Andean lavas: I. Local geochemical variations. Earth Planet Sci Lett 57:47–62Google Scholar
  62. James DE, Brooks C, Cuyubamba A (1976) Andean Cenozoic volcanism: Magma genesis in the light of strontium isotopic composition and trace-element geochemistry. Geol Soc Amer Bull 87(p):592–600Google Scholar
  63. Jaramillo JM (1976) Volcanic rocks of the Río Cauca valley, Colombia S.A. Thesis Degree of Master of Arts, Rice University, HoustonGoogle Scholar
  64. Kawamoto T (1996) Experimental constraints on differentiation and H2O abundance of calcalkaline magmas. Earth Planet Sci Lett 144:577–589Google Scholar
  65. Kay S, Mpodozis C, Ramos VA, Munizaga F (1991) Magma source variations for mid-Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the Central Andes (28–33°S). In: Andean Magmatism and its Tectonic Setting, Boulder, Colorado. Harmon, R.S., Rapela, C.W., eds. Spec. Pap. Geol. Soc. Am., vol 265, p 113–137Google Scholar
  66. Kellogg J, Vega V (1995) Tectonic development of Panamá, Costa Rica, and the Colombian Andes: Constraints from global positioning system geodetic studies and gravity. Geological Society of America. Special Paper vol 295, pp 75–90Google Scholar
  67. Kennan L, Pindell J (2009) Dextral shear, terrane accretion and basin formation in the Northern Andes: Best explained by interaction with a Pacific-derived Caribbean Plate. The geology and evolution of the region between North and South America. Geological Society of London, Special Publication, p 58Google Scholar
  68. Kerr AC, Tarney J, Nivia A, Marriner GF, Saunders AD (1998) The structure of an oceanic plateau: evidence from obducted Cretaceous terranes in western Colombia. Tectonophysics 292:173–188Google Scholar
  69. Kerrick DM, Connolly JAD (2001) Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s Interior. Nature, 411:293–296Google Scholar
  70. Kroonenberg S, Pichler H, Diederix H (1982) Cenozoic alkalibasaltic to ultrabasic volcanism in the uppermost magdalena valley Southern Huila department, Colombia. Geología Norandina 5:19–26Google Scholar
  71. Leal-Mejía H (2011) Phanerozoic Gold Metallogeny in the Colombian Andes – A tectono-magmatic approach: Ph.D. thesis, Barcelona (Catalonia), Spain, University of Barcelona, p 1000Google Scholar
  72. Leal-Mejia H, Shaw RP, Melgarejo JC (2018) Spatial/temporal migration of granitoid magmatisn and the phanerozoic tectono-magmatic evolution of the Colombian Andes. In: Cediel F and Shaw RP (eds). Geology and Tectonics of Northwestern South America: The Pacific-Caribbean-Andean Junction, Springer, pp 253–397Google Scholar
  73. LeMaitre RW, Bateman P, Dudek A, Keller J, MJ L-LB, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin BA (1989) Classification of Igneous Rocks and Glossary of Terms. Blackwell, OxfordGoogle Scholar
  74. Lonsdale P (2005) Creation of the Cocos and Nazca plates by fission of the Farallón plate. Tectonophysics 404(3–4):237–264Google Scholar
  75. López A, Ramírez S (2006) Registro del Vulcanismo Neógeno en el suroccidente antioqueño y sus implicaciones tectónicas. Undergraduate thesis. EAFIT University. 122pGoogle Scholar
  76. López A, Sierra GM, Ramírez S (2006) Vulcanismo Neógeno en el suroccidente antioqueño y sus implicaciones tectónicas. Boletín Ciencias de la Tierra 19:27–41Google Scholar
  77. López-Castro SM (2009) Estratigrafía, petrología y geoquímica de las rocas volcánicas del flanco occidental del volcán Puracé, alrededores de Coconuco. Master thesis on Earth Sciences. EAFIT University, p 9Google Scholar
  78. Mann P, Burke K (1984) Cenozoic rift formation in the northern Caribbean. Geology 12:732–736Google Scholar
  79. Mann P, Corrigan J (1990) Model for late Neogene deformation in Panama. Geology 18:558–562Google Scholar
  80. Mantilla FL, Mendoza H, Bissig T, Hart C (2011) Nuevas evidencias sobre el magmatismo Miocenico en el distrito minero de Vetas-California (Macizo de Santander, Cordillera Oriental, Colombia). Boletín de Geología vol 33/1, p 41–56Google Scholar
  81. Marín-Cerón MI (2007) Major, trace element and multi-isotopic systematics of SW Colombian volcanic arc, northern Andes: Contributions of slab fluid, mantle wedge and lower crust to the origin of Quaternary andesites. Doctoral thesis. Okayama University, Japan, p 133Google Scholar
  82. Marín-Cerón MI, Moriguti T, Makishima A, Nakamura E (2010) Slab decarbonation and CO2 recycling in the Southwestern Colombian volcanic arc. Geochim Cosmochim Acta 74:1104–1121Google Scholar
  83. Marriner GF, Millward D (1984) Petrochemistry of Cretaceous to recent Vulcanism in Colombia. J Geol Soc Lond 141:473–486Google Scholar
  84. McCourt WJ, Aspden JA, Brook M (1984) New geological and geochronological data from the Colombian Andes: continental growth by multiple accretion. J Geol Soc Lond 141:831–845Google Scholar
  85. Mejía EL, Velandia F, Zuluaga CA, López JA, Cramer T (2012) Análisis estructural al noreste del Volcán Nevado del Ruíz, Colombia–aporte a la exploración geotérmica. Boletín de Geología 34:27–41Google Scholar
  86. Mesa-García J (2015) Combia Formation: a Miocene immature volcanic arc?. Master Thesis, EAFIT Univeristy, Medellín, Colombia. p 249Google Scholar
  87. Molina JF, Poli S (2000) Carbonate stability and fluid composition in subducted oceanic crust: an experimental study on H2O-CO2-bearing basalts. Earth Planet Sci Lett 176:295–231Google Scholar
  88. Monsalve ML, Arcila M (2015) Firma Adakítica en los productos recientes de los volcanes Nevado del Huila y Puracé, Colombia. Boletín Geológico 43:23–40Google Scholar
  89. Montes C, Cardona A, McFadden R, Morón SE, Silva CA, Restrepo-Moreno S, Ramírez DA, Hoyos N, Wilson J, Farris D, Bayona GA, Jaramillo CA, Valencia V, Bryan J, Flores JA (2012) Evidence for middle Eocene and younger land emergence in central Panama: Implications for Isthmus closure. Science 124(5–6):780–799Google Scholar
  90. Monzier M, Robin C, Hall ML, Cotten J, Mothes P, Eissen JP, Samaniego P (1997) Les adakites d'Equateur : Modèle préliminaire. Comptes Rendus Acad. Sci Paris 324:545–552Google Scholar
  91. Morlidge M, Pawley A, Giles D (2006) Double carbonates breakdown reactions at high pressures: an experimental study in the system CaO-MgO-FeO-MnO-CO2. Contrib Mineral Petrol 152:365–373Google Scholar
  92. Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallisation of primitive arc magmas under upper-most mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141:643–658Google Scholar
  93. Nakamura E, Campbell IH, Sun SS (1985) The influence of subduction processes on the geochemistry of Japanese alkaline basalt. Nature 316:55–58Google Scholar
  94. Navarro S, Pulgarín B, Monsalve ML, Cortés GP, Calvache ML, Pardo N, Murcia H (2009) Geología e historia eruptiva del complejo volcánico Doña Juana (CVDJ) Nariño. Boletín de geología 31(2)Google Scholar
  95. Ordoñez O (2002) Caracterizacao isotopica Rb-Sr E Sm-Nd dos principais eventos magmáticos nos Andes Colombianos. Doctoral thesis. Brazilia University, p 165Google Scholar
  96. Ogasawara Y, Ohta M, Fuksawa K, Katayama I, Maruyama S (2000) Diamond-bearing and diamond-free metacarbonate rocks from Kumdy-Kol in the Kokchetav Massif, northern Kazakhstan. The Island Arc, 9:400–416Google Scholar
  97. Pardo N, Cepeda H, Jaramillo J (2005) The Paipa volcano, Eastern Cordillera of Colombia, South America: volcanic stratigraphy. Earth Sci Res J 9:3–18Google Scholar
  98. Pardo-Casas F, Molnar P (1987) Relative motion of the Nazca (Farallón) and South American plates since Late Cretaceous time. Tectonics 6(3):223–248Google Scholar
  99. París G, Marín W, Sauret B, Vergara H, Bles J L (1992) Neotectónica. En: Microzonificación Sismogeotécnica de Popayán. CEE-INGEOMINAS. INGEOMINAS 2, pp 28–49Google Scholar
  100. Patiño LC, Carr M, Feigenson M (2000) Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contrib Mineral Petrol 138:265–283Google Scholar
  101. Pedersen R, Furnes H (2001) Nd- and Pb-isotopic variations through the upper oceanic crust in DSDP/ODP Hole 504B, Costa Rica Rift. Earth Planet Sci Lett 189:221–235Google Scholar
  102. Pedraza-García P, Vargas CA, Monsalve H (2007) Geometric Model of the Nazca Plate Subduction in Southwest Colombia. Earth Sci Res J 11(2):117–130Google Scholar
  103. Pérez AM, Marín-Cerón MI, Bernet M, Sierra G, Moreno N (2013) Resultados preliminares de AFT en la Formación Amagá, Pozos el Cinco-1B y Venecia-1. In: Colombia. Event: XIV Congreso Colombiano de Geología Libro: XIV Congreso Colombiano de Geología. ResúmenesGoogle Scholar
  104. Pichavant M, Martel C, Bourdier JL, Scaillet B (2002). Physical conditions, structure, and dynamics of a zoned magma chamber: Mount Pelée (Martinique, Lesser Antilles Arc). J Geophys Res 107, article number 2093Google Scholar
  105. Piedrahita VA, Bernet M, Chadima M, Sierra GS, Marín-Cerón MI, Toro GE (2017) Detrital zircon fission-track thermochronology and magnetic fabric of the Amagá Formation (Colombia): Intracontinental deformation and exhumation events in the northwestern Andes. Sediment Geol 356:26–42.  https://doi.org/10.1016/j.sedgeo.2017.05.003 Google Scholar
  106. Pindell JL, Higgs R, Dewey JF (1998) Cenozoic palinspatic reconstruction, paleogeographic evolution and hydrocarbon setting of the northern margin of the northern margin of South America. In: Pindell JL, Drake CL (eds) Paleogeographic evolution and non-glacial eustasy, northern South America: Society of economic and petroleum mineralogists special publications, 58:45–85Google Scholar
  107. Plank T, Balzer V, Carr M (2004) Nicaraguan volcanoes record paleoceanographic changes accompanying closure of the Panama gateway. Geology 30(12):1087–1090Google Scholar
  108. Ramírez DA, López A, Sierra GM, Toro GE (2006) Edad y provenincia de las rocas volcánico sedimentarias de la Formación Combia en el suroccidente Antioqueño- Colombia. Boletin Ciencias de la Tierra. 19:9–26Google Scholar
  109. Ramos V, Aleman A (2000) Tectonic evolution of the Andes U. Cordani, E.J. Milani, A. Thomaz Filho, M.C. Campos Neto (Eds.), Tectonic Evolution of South America, p. 635–685 (31st Int. Geol. Congr., Rio de Janeiro)Google Scholar
  110. Restrepo-Moreno SA, Foster DA, Stockli DF, Parra-Sánchez LN (2009) Long-term erosion and exhumation of the ‘Altiplano Antioqueño’, Northern Andes (Colombia) from apatite (U-Th)/He thermochronology. Earth Planet Sci Lett 278:1–12Google Scholar
  111. Restrepo-Moreno SA, Cardona A, Jaramillo C, Bayona G, Montes C, Farris DW (2010) Constraining Cenozoic uplift/exhumation of the Panamá-Chocó Block by apatite and zircon low-temperature thermochronology: insights on the onset of collision and the morphotectonic history of the region. Abstract. GSA Denver Annual Meeting. Geol Soc Am Abstr Programs 42(5):521Google Scholar
  112. Restrepo JJ, Toussaint JF, González H, (1981) Edades MioPliocenas del magmatismo asociado a la Formación Combia. Departamentos de Antioquia y Caldas, Colombia. Geología Norandina. 3: 2126Google Scholar
  113. Restrepo JJ, Toussaint JF (1988) Terranes and continental accretion in the Colombian Andes. Episodes 11(3):189–193Google Scholar
  114. Restrepo J, Toussaint J (1990) Cenozoic arc magmatism of northwestern Colombia: Geological Society of America Special paper, vol 41, pp 205–212Google Scholar
  115. Rios AM, Sierra MI (2004) La Formación Combia: Registro de la relación entre el volcanismo Neógeno y la sedimentación fluvial, sección Guineales – Bolombolo, suroeste antioqueño. Undergraduate thesis. EAFIT University. 122 pp.Google Scholar
  116. Rovida A, Tibaldi A (2005) Propagation of strike-slip faults across Holocene volcano-sedimentary deposits, Pasto, Colombia. J Struct Geol 27:1838–1855Google Scholar
  117. Rodríguez G, Arango MI, Bermúdez JG (2012) Batolito de Sabanalarga, plutonismo de arco en la zona de sutura entre las cortezas oceánica y continental de los Andes del Norte. Boletín Ciencias de la Tierra 32:81–98Google Scholar
  118. Rodriguez-Vargas KE, Mallmann G, Conceicao RV, Kawashita K, Weber MBI (2005) Mantle diversity beneath the Colombian Andes, Northern Volcanic Zone: Constraints from Sr and Nd isotopes. Lithos 82:471–484Google Scholar
  119. Russo RM, Okal EA, Rowley K (1992) Historical seismicity of the southeastern Caribbean and tectonic implications. Pageoph 139(1):87–120Google Scholar
  120. Ryan JG, Langmuir CH (1987) The systematics of lithium abundances in young volcanic rocks. Geochim Cosmochim Acta 51:1727–1741Google Scholar
  121. Saenz EA (2003) Fission track thermochronology and denudational response to tectonics in the north of the Colombian Central Cordillera. Master thesis. Shimane University. 131 ppGoogle Scholar
  122. Sakuyama M, Nesbitt RW (1986) Geochemistry of the quaternary volcanic rocks of the northeast Japan arc. J Volcanol Geotherm Res 29(1–4):413–450Google Scholar
  123. Shibata T, Nakamura E (1997) Across-arc variations of isotope and trace element compositions from Quaternary basaltic volcanic rocks in northeastern Japan: Implications for interaction between subducted oceanic slab and mantle wedge. J Geophys Res 102(B4):8051–8064Google Scholar
  124. Sierra G (1994) Structural and sedimentary evolution of the Irra Basin, northern Colombian Andes. Master thesis, Department of Geological Science, State University of New York, Binghamton, NY. 102 pp.Google Scholar
  125. Sierra GM, MacDonald W, Estrada JJ (1995) Young rotations inferred from paleomagnetic evidence in late Tertiary strata: slip reversals along the Romeral Strike –Slip fault zone, Northern Andes. In: Estados Unidos Eos, Transactions, American Geophysical UnionGoogle Scholar
  126. Sierra GM, Marín MI (2011) Amagá, Cauca and Patía Basins at: Petroleum Geology of Colombia, vol 2, ANH-EAFIT, p 104Google Scholar
  127. Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Andean Geol 31(2):161–206Google Scholar
  128. Sudo A, Tatsumi Y (1990) Phlogopite and K-amphibole in the upper mantle: Implication for magma genesis in subduction zones. Geophys Res Lett 17(1):29–32Google Scholar
  129. Sun SS, McDonough W (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds.) Magmatism in ocean basins, Geol. Soc. Spec. Pub., vol 42, pp 313–345Google Scholar
  130. Taboada A, Rivera LA, Fuenzalida A, Cisternas A, Philip H, Bijwaard H, Olaya J, Rivera C (2000) Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics 19(5):787–813Google Scholar
  131. Tassinari CCG, Díaz F, Buena J (2008) Age and sources of gold mineralization in the Marmato mining district, NW Colombia: A Miocene – Pliocene epizonal gold deposit. Ore Geol Rev 33:505–518Google Scholar
  132. Tatsumi Y (2003) Some constraints on arc magma genesis. In: Eiler J (ed) Inside the Subduction Factory. American Geophysical Union Monographs, 138, pp 277–292Google Scholar
  133. Tatsumi Y (2005) The subduction factory: how it operates in the evolving earth. GSA Today 15(7):4–10Google Scholar
  134. Thorpe RS, Francis PW (1979) Variations in Andean andesite composition and their petrogenetic significance. Tectonophysics Bd. 57 pp 53–70 AmsterdamGoogle Scholar
  135. Thorpe RS, Francis PW, Hammill M, Baker MCW (1982).The Andes. Andesites. Ed Thorpe, R.S. 187–205Google Scholar
  136. Thorpe RS (1984) The tectonic setting of active Andean volcanism. In: Andean magmatism: Chemical and Isotopic Constraints (Harmon, R.S.; Barreiro, B.A.; editors). Shiva Geological Series, Shiva Publications, Nantwich, U.K, pp 4–8Google Scholar
  137. Tilton GR, Barreiro BA (1980) Origin of lead in Andean calc-alkaline lavas, southern Peru. Science 210:1245–1247Google Scholar
  138. Toro G, Restrepo JJ, Poupeau G, Saenz E, Azdimousa A (1999) Datación por trazas de fisión de circones rosados asociados a la secuencia volcano – sedimentaria de Irra (Caldas). Boletín de Ciencias de la Tierra 13:28–34Google Scholar
  139. Toro LM, Borrero-Peña CA, Ayala LF (2010) Petrografía y geoquímica de las rocas ancestrales del volcán Nevado del Ruiz. Boletín de Geología 32(1):95–105Google Scholar
  140. Torres-Hernández MP (2010) Petrografía, geocronología y geoquímica de las ignimbritas de la formación Popayán, en el contexto del vulcanismo del suroccidente de Colombia, pp 35–132Google Scholar
  141. Toussaint JF, Restrepo JJ (1982) Magmatic evolution of the northwestern Andes of Colombia. Earth Sci Rev 18:205–213Google Scholar
  142. Trenkamp R, Kellogg JN, Freymueller JT, Mora HP (2002) Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. J S Am Earth Sci 15:157–171Google Scholar
  143. Uribe-Mogollón CA (2013) Hydrothermal evolution of the Titiribí mining district. Undergraduate thesis. EAFIT University. 127 ppGoogle Scholar
  144. Ujueta G (1991) Tectónica y actividad ígnea en la Cordillera Oriental de Colombia (Sector Girardot-Cúcuta). En Simposio sobre Magmatismo Andino y su Marco Tectónico, memorias Tomo I, 151–192Google Scholar
  145. Van der Hilst R, Mann P (1994) Tectonic implications of tomographic images of subducted lithospher beneath northwestern South America. Geology 22(5):451–454Google Scholar
  146. van Keken PE, Kiefer B, Peacock SM (2002) High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle, Geochem Geophys Geosyst, 3(10):1056.  https://doi.org/10.1029/2001GC000256
  147. Velandia F, Acosta J, Terraza R, Villegas H (2005) The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia. Tectonophysics 399:313–329Google Scholar
  148. Villagómez D (2010) Thermochronology, geochronology and geochemistry of the Western and Central cordilleras and Sierra Nevada de Santa Marta, Colombia: The tectonic evolution of NW South America. Doctoral thesis. University of Geneve. 166 ppGoogle Scholar
  149. Walker GPL, Wilson CJN, Froggat PC (1991) An ignimbrite veneer deposits; the trail marker of a pyroclastic flow. J Volcanol Geotherm Res 9:409–421Google Scholar
  150. White WM, Dupre B, Vidal P (1985) Isotope and trace element geochemistry of sediments from the Barbados Ridge — Demerara Plain region, AtlaGoogle Scholar
  151. Wilder DT (2003) Relative motion history of the Pacific-Nazca (Farallon) plates since 30 million years ago. Graduate Thesis. University of South Florida. 106 pp.Google Scholar
  152. Winter John D (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall, Upper Saddle River. ISBN 0-13-240342-0Google Scholar
  153. Weber MBI, Tarney J, Kempton PD, Kent RW (2002) Crustal make-up of the northern Andes: evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia. Tectonophysics 345:49–82Google Scholar
  154. Wood DA, Joron JL, Treuil M (1979) A re-appraisal of use of trace elements to classify and discriminate between magma series erupted in different tectonic setting. Earth Planet Sci Lett 45:326–336. 122Google Scholar
  155. Wörner G, Davidson J, Moorbath S, Turner TL, McMillan N, Nye C, López-Escobar L, Moreno H (1988) The Nevados de Payachata Volcanic Region 18°S/69°W, Northern Chile. I. Geological, geochemical and isotopic observations. Bull Volcanol 30:287–303Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. I. Marín-Cerón
    • 1
  • H. Leal-Mejía
    • 2
  • M. Bernet
    • 3
  • J. Mesa-García
    • 1
    • 4
  1. 1.Departamento de Ciencias de la TierraUniversidad EAFITMedellínColombia
  2. 2.Mineral Deposit Research Unit (MDRU)The University of British Columbia (UBC)VancouverCanada
  3. 3.Institut des Sciences de la TerreUniversité Grenoble AlpesGrenobleFrance
  4. 4.Geology DepartmentUniversity of MichiganAnn ArborUSA

Personalised recommendations