Advertisement

Ordovician Orogeny and Jurassic Low-Lying Orogen in the Santander Massif, Northern Andes (Colombia)

  • Carlos A. Zuluaga
  • Julian A. Lopez
Chapter
Part of the Frontiers in Earth Sciences book series (FRONTIERS)

Abstract

The metamorphic crystalline core of the Santander Massif recorded an early Paleozoic peak metamorphism that reached the granulite facies with temperatures above the wet pelite solidus and an overprinting Jurassic low-pressure metamorphism. The early Paleozoic metamorphism occurred during the Ordovician and produced greenschist to amphibolite facies rocks (Silgará Schist) in the outer and upper parts of the orogen and migmatitic granulite facies rocks (Bucaramanga Gneiss and Berlín Orthogneiss) as observed in the deepest exhumed parts of the orogen. The location of the highest recorded metamorphic PT conditions and the Sn+1 foliation geometry hints at a dome-like structure. The overprinting Jurassic low-pressure metamorphism affected middle to late Paleozoic sedimentary sequences and is related to a N-S Triassic-Jurassic magmatic belt of a low-lying orogen. The plutonic belt is composed mainly of granites and tonalites with a range in ages from 172 to 210 Ma and is interpreted to belong to a low-lying orogen (low-lying Triassic-Jurassic magmatic arc). Present structures in the massif imprint a geometry characterized by converging faults toward the core of the massif giving the appearance of compressional horsts similar to the known back thrust and shortcut thrust geometry. The most important structural features are the Bucaramanga fault toward the west and the Pamplona-Cubogón-Mercedes system toward the east; additionally, there are numerous structures with contrasting cinematic behavior. Some of those faults have been interpreted to represent reactivated and inverted normal faults. It is still unclear if these reactivated faults operated during the Triassic-Jurassic as the boundaries of extensional basins.

Keywords

Colombia Early Paleozoic Metamorphism Jurassic Magmatic Arc Oblique Subduction 

Abbreviations

bt

Biotite

CAP

Continental Arcs Potassic

grt

Garnet

hbl

Hornblende

IK

Kübler crystallinity index

IOP

Initial Oceanic Arcs Potassic

kfs

Potassium feldspar

LOP

Late Oceanic Arcs Potassic

MGV

“Metasedimentitas de Guaca, La Virgen” 

ms

Muscovite

PAP

Post-collisional Arcs Potassic

pl

Plagioclase

PT

Pressure and temperature

qz

Quartz

sil

Sillimanite

Sn+1

Oldest recognized metamorphic foliation, can be followed by progressively younger foliations (Sn+2, Sn+3, etc.)

syn-COLG

Syn-collisional granites

ttn

Titanite

VAG

Volcanic arc granites

WR

Whole rock

Notes

Acknowledgments

This work received financial support from Colciencias (grant number 036-2013) and Universidad Nacional de Colombia (grant numbers 17296 and 28170). We thank Fabio Cediel for his critical reading of a first version of the manuscript.

References

  1. Altenberger U, Concha-Perdomo AE (2005) Late lower to early middle Jurassic arc magmatism in the northern Ibagué-Batholith/Colombia. Geología Colombiana 30:87–97Google Scholar
  2. Amaya S, Zuluaga C, Bernet M (2017) New fission-track age constraints on the exhumation of the central Santander Massif: implications for the tectonic evolution of the Northern Andes, Colombia. Lithos 282:388–402Google Scholar
  3. Arenas C (2004) Litología y petrología de las metamorfitas carbonatadas y metasedimentitas asociadas de la Formación Silgará, faja noroeste de Mutiscua (Macizo de Santander), norte de Santander. Undergraduate Thesis, Bogotá, 156 p. Universidad Nacional de Colombia, ColombiaGoogle Scholar
  4. Aspden JA, McCourt WJ, Brook M (1987) Geometrical control of subduction-related magmatism: the Mesozoic and Cenozoic plutonic history of Western Colombia. J Geol Soc Lond 144:893–905CrossRefGoogle Scholar
  5. Audemard FA, Romero G, Rendón H, Cano V (2005) Quaternary fault kinematics and stress tensors along the southern Caribbean from fault-slip data and focal mechanism solutions. Earth Sci Rev 69:181–233CrossRefGoogle Scholar
  6. Barbarin B (1990) Granitoids: main petrogenetic classifications in relation to origin and tectonic setting. Geol J 25:227–238CrossRefGoogle Scholar
  7. Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46:605–626CrossRefGoogle Scholar
  8. Bissig T, Mantilla LC, Hart CJR (2014) Petrochemistry of igneous rocks of the California-Vetas mining district, Santander, Colombia: implications for northern Andean tectonics and porphyry Cu (–Mo, Au) metallogeny. Lithos 200-201:355–367CrossRefGoogle Scholar
  9. Boinet T, Bourgois J, Bellon H, Toussaint JF (1985) Age et repartition du magmatisme Premesozoique des Andes de Colombia. Comptes Rendus de l’Academie des Sciences Paris 300(II):445–450Google Scholar
  10. Bonin B (1990) From orogenic to anorogenic settings: evolution of granitoid suites after a major orogenesis. Geol J 25:261–270CrossRefGoogle Scholar
  11. Botello F, Mantilla FLC, Colegial JD (2014) Edad U-Pb en zircones y contexto tectónico de formación delGranito de Durania (Macizo de Santander, Colombia). Memorias XI Semana Técnica de Geología y IGeosciences anual meeting. UIS. BucaramangaGoogle Scholar
  12. Bustamante C, Archanjo CJ, Cardona A, Vervoort JD (2016) Late Jurassic to early cretaceous plutonism in the Colombian Andes: a record of long-term arc maturity. Geol Soc Am Bull 128:B31307–B31301CrossRefGoogle Scholar
  13. Butler JP, Beaumont C, Jamieson RA (2011) Crustal emplacement of exhuming (ultra)high-pressure rocks: will that be pro- or retro-side? Geology 39:635–638CrossRefGoogle Scholar
  14. Cardona A (2003) Correlações entre fragmentos do embasamento pre-Mesozoíco da terminação setentrionaldos Andes Colombianos, com base em dados isotópicos e geocronológicos. Dissertação de Mestrado, Universidade de São Paulo, Brazil, p 119Google Scholar
  15. Cardona A, Valencia VA, Lotero A, Villafañez Y, Bayona G (2016) Provenance of middle to latePalaeozoic sediments in the northeastern Colombian Andes: implications for Pangea reconstruction. Int Geol Rev 58(15):1914–1939Google Scholar
  16. Castellanos O, Ríos C, Akira T (2008) A new approach on the tectonometamorphic mechanisms associated with P–T paths of the Barrovian-type Silgará formation at the Central Santander Massif, Colombian Andes. Earth Sci Res J 12:125–155Google Scholar
  17. Cediel F, Shaw RP, Cáceres C (2003) Tectonic assembly of the northern andean block. In: Bartolini C, Buffler RT, Blickwede J (eds) The Circum-Gulf of Mexico and the Caribbean: hydrocarbon habitats, basin formation, and plate tectonics, American Association of Petroleum Geologists memoir, vol 79. American Association of Petroleum Geologists, Tulsa, pp 815–848Google Scholar
  18. Chappell BW (1999) Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 46:535–551CrossRefGoogle Scholar
  19. Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174Google Scholar
  20. Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinb Earth Sci 83:1–26CrossRefGoogle Scholar
  21. Cochrane R, Spikings R, Gerdes A, Ulianov A, Mora A, Villagómez D, Putlitz B, Chiaradia M (2014) Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos 190–191:383–402CrossRefGoogle Scholar
  22. Cordani UG, Cardona A, Jimenez DM, Liu D, Nutman AP (2005) Geochronology of Proterozoic basement inliers in the Colombian Andes: tectonic history of remnants of a fragmented Grenville belt. Geol Soc Spec Pub 246:329–346CrossRefGoogle Scholar
  23. Daconte R, Salinas R (1980a) Geología de la Plancha 76 Ocaña Escala 1:100000. Instituto Colombiano de Geología y MineríaGoogle Scholar
  24. Daconte R, Salinas R (1980b) Geología de la Plancha 66 Miraflores Escala 1:100000. Instituto Colombiano de Geología y MineríaGoogle Scholar
  25. Debon F, Le Fort P (1983) A chemical-mineralogical classification of common plutonic rocks and associations. Trans R Soc Edinb Earth Sci 73:135–149CrossRefGoogle Scholar
  26. Dörr W, Grösser JR, Rodríguez GI, Kramm U (1995) Zircon U-Pb age of the Paramo Rico tonalite-granodiorite, Santander Massif (ordillera riental, Colombia) and its geotectonic significance. J S Am Earth Sci 8:187–194CrossRefGoogle Scholar
  27. Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogénesis. Lithos 26:115–134CrossRefGoogle Scholar
  28. Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20:641–644CrossRefGoogle Scholar
  29. Etayo F, Barrero D et al (1983) Mapa de Terrenos de Colombia, Publicaciones Geológicas Especialesdel Ingeominas 14(1):235Google Scholar
  30. Forero A (1990) The basement of the Eastern Cordillera Colombia: an allochthonous terrane in northwestern South America. J S Am Earth Sci 3:141–151CrossRefGoogle Scholar
  31. Frost CD, Frost BR, Beard JS (2016) On silica-rich granitoids and their eruptive equivalents. Am Mineral 101:1268–1284CrossRefGoogle Scholar
  32. Fúquen J, Ceballos L, Pedraza A, Marín E (2010) Geología de la Plancha 98 Durania Escala 1:100000. Instituto Colombiano de Geología y MineríaGoogle Scholar
  33. García C, Ríos C, Castellanos O (2005) Medium-pressure metamorphism in the central Santander Massif, Eastern Cordillera, Colombian Andes: constraints for a collision model. Boletín de Geología 27:43–68Google Scholar
  34. Goldsmith R, Marvin RF, Mehnert HH (1971) Radiometric ages in the Santander Massif, Eastern Cordillera, Colombian Andes. US Geol Surv Prof Paper 750D:D44–D49Google Scholar
  35. Harris NBW, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision-zone magmatism. In: Coward MP, Ries AC (eds) Collision tectonics, Geological Society special publication, vol 19. Geological Society, London, pp 67–81Google Scholar
  36. Hastie AR, Kerr AC, Pearce JA, Mitchell SF (2007) Classification of altered volcanic Island arc rocks usingImmobile trace elements: development of the Th-Co discrimination diagram. J Petrol 48:2341–2357Google Scholar
  37. Jaillard E, Soler P, Carlier G, Mourier T (1990) Geodynamic evolution of the northern and central Andes during early to middle Mesozoic times: a Tethyan model. J Geol Soc 147:1009–1022CrossRefGoogle Scholar
  38. Jiménez C (2016) Caracterización petrológica y geoquímica de la unidad Ortoneis, Macizo de Santander, Colombia. MSc Thesis, Bogotá, 103 p. Universidad Nacional de Colombia, ColombiaGoogle Scholar
  39. Kammer A (1993) Steeply dipping basement faults and associated structures of the Santander Massif, Eastern Cordillera, Colombian Andes. Geologia Colombiana 18:47–64Google Scholar
  40. Kammer A, Mojica J (1996) Una comparación de la tectónica de basamento de las cordilleras central y oriental. Geología Colombiana 20:93–106Google Scholar
  41. Kennan L, Pindell JL (2009) Dextral shear, terrane accretion and basin formation in the Northern Andes: best explained by interaction with a Pacific-derived Caribbean plate? In: James KH, Lorente MA, Pindell JL (eds) The origin and evolution of the Caribbean plate, Geological Society special publications, vol 328. Geological Society, London, pp 487–531Google Scholar
  42. Leal H, Melgarejo I, Draper JC, Shaw R (2011) Phanerozoic gold metallogeny in the Colombian Andes. In: Proceedings Let’s talk ore deposits, Society for Geology Applied to mineral deposits, SGA biannual meeting, Antofagasta, Chile. Extended abstracts, pp 209–211Google Scholar
  43. Mantilla LC, Valencia VA, Barra F, Pinto J, Colegial J (2009) Geocronología U-Pb del Distrito Aurífero de Vetas-California (Depto de Santander, Colombia). Boletín de Geología 31:31–43Google Scholar
  44. Mantilla LC, Mendoza H, Bissig T, Hart CJR (2011) Nuevas evidencias sobre el magmatismo Miocénico en el Distrito Minero de Vetas-California (Macizo de Santander, Cordillera Oriental, Colombia). Boletín de Geología 33:43–58Google Scholar
  45. Mantilla LC, Bissig T, Cottle JM, Hart CJR (2012) Remains of early Ordovician mantle-derived magmatism in the Santander Massif (Colombian Eastern Cordillera). J S Am Earth Sci 38:1–12CrossRefGoogle Scholar
  46. Mantilla LC, Bissig T, Valencia V, Hart CJR (2013) The magmatic history of the California-Vetas Mining District, Santander Massif, Eastern Cordillera, Colombia. J S Am Earth Sci 45:235–249CrossRefGoogle Scholar
  47. Mantilla LC, García CA, Valencia V (2016) Propuesta de escisión de la denominada ‘Formación Silgará’ (Macizo de Santander, Colombia), a partir de edades U-Pb en zircones detríticos. Boletín de Geología 38:33–47CrossRefGoogle Scholar
  48. McClay KR, Buchanan PG (1992) Thrust faults in inverted extensional basins. In: McClay KR (ed) Thrust tectonics. Chapman & Hall, London, pp 93–121CrossRefGoogle Scholar
  49. Merriman RJ, Frey M (1999) Patterns of very low-grade metamorphism in metapelitic rocks. In: Robinson D, Frey D (eds) Low-grade metamorphism. Blackwell, London, pp 61–107Google Scholar
  50. Mojica J, Kammer A, Ujueta G (1996) El Jurásico del Sector Noroccidental de Suramérica y Guía de laExcursión al Valle Superior del Magdalena (Nov.1- 4/95), Regiones de Payandé y Prado, Departamento delTolima. Geología Colombiana 21:3–40Google Scholar
  51. Moreno-Sánchez M, Gómez-Cruz AJ, Castillo-González H (2005) La “Formación Floresta Metamorfoseada” (sensu Ward et al, 1973) no es la Formación Floresta sin metamorfosear. X Congreso Colombiano de Geología, Bogotá, Memorias CD, pp 1–7Google Scholar
  52. Müller D, Rock NMS, Groves DI (1992) Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: a pilot study. Mineral Petrol 46:259–289CrossRefGoogle Scholar
  53. Oldow JS, Channell JET, Catalano R, D’Argenio B (1990) Contemporaneous thrusting and large-scale rotations in the western Sicilian fold and thrust belt. Tectonics 9:661–681CrossRefGoogle Scholar
  54. Ordóñez O (2001) Caracterização isotópica Rb-Sr e Sm-Nd dos principais eventos magmáticos nos AndesColombianos. Tesis de Doctorado (inédita). Universidad de Brasilia, p 176Google Scholar
  55. Ordóñez O, Restrepo JJ, Pimentel MM (2006) Geochronological and isotopical review of pre-Devonian crustal basement of the Colombian Andes. J S Am Earth Sci 21:372–382CrossRefGoogle Scholar
  56. Ordóñez-Calderón JC (2003) Petrology of the granitoid rocks in the Santander Massif, Northeast Colombia. MSc thesis, Shimane University, 122 pGoogle Scholar
  57. Ordóñez-Carmona O, Restrepo-Alvarez JJ, Pimentel MM (2006) Geochronological and isotopical review of pre-Devonian crustal basement of the Colombian Andes. J S Am Earth Sci 21:372–382CrossRefGoogle Scholar
  58. Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites. Wiley, New York, pp 525–548Google Scholar
  59. Pearce JA (1996) Sources and settings of granitic rocks. Episodes 19:120–125Google Scholar
  60. Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983CrossRefGoogle Scholar
  61. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  62. Pulido O (1985) Geología de la Plancha 135 San Gil Escala 1:100000. Instituto Colombiano de Geología y MineríaGoogle Scholar
  63. Restrepo-Pace PA (1995) Late Precambrian to Early Mesozoic tectonic evolution of the Colombian Andes, based on new geochronological, geochemical and isotopic data. PhD thesis, University of Arizona, 195 pGoogle Scholar
  64. Restrepo-Pace PA, Ruiz J, Gehrels G, Cosca M (1997) Geochronology and Nd isotopic data of Grenville-agerocks in the Colombian Andes: new constraints for late Proterozoic–early Paleozoic paleocontinentalreconstructions of the Americas. Earth and Planetary Science Letters 150:427–441Google Scholar
  65. Restrepo-Pace PA, Cediel F (2010) Northern South America basement tectonics and implications for paleocontinental reconstructions of the Americas. J S Am Earth Sci 29:764–771CrossRefGoogle Scholar
  66. Sarmiento-Rojas LF, Van Wess JD, Cloetingh S (2006) Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: inferences from tectonic models. J S Am Earth Sci 21:383–411CrossRefGoogle Scholar
  67. Shand SJ (1943) Eruptive rocks their genesis, composition, classification, and their relation to ore-deposits with a chapter on meteorite. Wiley, New YorkGoogle Scholar
  68. Sillitoe RH, Jaramillo L, Damon IE, Shtiqullah M, Escovar R (1982) Setting, characteristics, and age of the Andean porphyry copper belt in Colombia. Econ Geol 77:1837–1850CrossRefGoogle Scholar
  69. Silva TJC, Sial A, Ferreira V, Estrada JJ (2004) C isotope stratigraphy of a Vendian carbonate succession in northwestern Andes: implications for the NW Andes-Mexico connection. Geos 24:SE02–SE02Google Scholar
  70. Singer A, Beltrán C (1996) Active faulting in the southern Venezuelan Andes and Colombian borderland. In: 3rd international symposium on Andean Geodynamics, St Malo, pp 243–246Google Scholar
  71. Thompson RN (1982) Magmatism of the British Tertiary volcanic province. Scott J Geol 18:49–107CrossRefGoogle Scholar
  72. Thuy NTB, Satir M, Siebel W, Vennemann T, Long TV (2004) Geochemical and isotopic constraints on the petrogenesis of granitoids from the Dalat zone, southern Vietnam. J Asian Earth Sci 23:467–482CrossRefGoogle Scholar
  73. Tschanz CM, Marvin RF, Cruz J, Mehnert HH, Cebula GT (1974) Geologic evolution of the Sierra Nevada de Santa Marta, Northeastern Colombia. Geol Soc Am Bull 85:273–284CrossRefGoogle Scholar
  74. Van der Lelij R (2013) Reconstructing north–western Gondwana with implications for the evolution of the Iapetus and Rheic Oceans: a geochronological, thermochronological and geochemical study. PhD thesis, Université de Genève, 221 pGoogle Scholar
  75. Van der Lelij R, Spikings R, Ulianov A, Chiaradia M, Mora A (2016) Palaeozoic to early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific oceans. Gondwana Res 31:271–294CrossRefGoogle Scholar
  76. Vargas R, Arias A (1981a) Geología de la Plancha 97 Cáchira Escala 1:100000. Instituto Colombiano de Geología y MineríaGoogle Scholar
  77. Vargas R, Arias A (1981b) Geología de la Plancha 86 Abrego Escala 1:100000 . Instituto Colombiano de Geología y MineríaGoogle Scholar
  78. Vargas R, Arias A, Jaramillo L, Tellez N (1984) Geología de la Plancha 136 Málaga Escala 1:100000. Instituto Colombiano de Geología y MineríaGoogle Scholar
  79. Villaseca C, Barbero L, Herreros V (1998) A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Trans R Soc Edinb Earth Sci 89:113–119CrossRefGoogle Scholar
  80. Ward ED, Goldsmith R, Cruz BJ, Restrepo H (1973) Geología de los cuadrángulos H-12 Bucaramanga y H-13 Pamplona. Boletín Geológico de INGEOMINAS 21:1–132Google Scholar
  81. Ward D, Goldsmith R, Cruz J, Jaramillo L, Vargas R (1977a) Geología de la Plancha 121 Cerrito Escala 1:100000. Instituto Colombiano de Geología y MineríaGoogle Scholar
  82. Ward D, Goldsmith R, Jimeno A, Cruz J, Restrepo H, Gómez E (1977b) Geología de la Plancha 120 Bucaramanga Escala 1:100000. Instituto Colombiano de Geología y MineríaGoogle Scholar
  83. Ward D, Goldsmith R, Cruz J, Jaramillo L, Vargas R (1977c) Geología de la Plancha 110 Pamplona Escala 1:100000. Instituto Colombiano de Geología y MineríaGoogle Scholar
  84. Ward D, Goldsmith R, Jimeno A, Cruz J, Restrepo H, Gómez E (1977d) Geología de la Plancha 109 Rio Negro Escala 1:100000. Instituto Colombiano de Geología y MineríaGoogle Scholar
  85. Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogénesis. Contrib Mineral Petrol 95:407–419CrossRefGoogle Scholar
  86. Whitney D, Evans B (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187CrossRefGoogle Scholar
  87. Willett S, Beaumont C, Fullsack P (1993) Mechanical model for the tectonics of doubly vergent compressionalorogens. Geology 21:371–374Google Scholar
  88. Zuluaga C, Pinilla A, Mann P (2015) Jurassic silicic volcanism and associated continental- arc basin in Northwestern Colombia (southern boundary of the Caribbean plate). In: Bartolini C, Mann P (eds) Petroleum geology and potential of the Colombian Caribbean margin, AAPG memoir, vol 108. American Association of Petroleum Geologists, Tulsa, pp 137–160Google Scholar
  89. Zuluaga CA, Amaya S, Urueña C, Bernet M (2017) Migmatization and low-pressure overprinting metamorphism as record of two pre cretaceous tectonic episodes in the Santander Massif of the Andean basement in northern Colombia (NW South America). Lithos 274-275:123–146CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de GeocienciasUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations