Exhumation-Denudation History of the Maracaibo Block, Northwestern South America: Insights from Thermochronology

  • Mauricio A. BermúdezEmail author
  • Matthias Bernet
  • Barry P. Kohn
  • Stephanie Brichau
Part of the Frontiers in Earth Sciences book series (FRONTIERS)


The Maracaibo block forms a distinct continental fragment in northwestern South America lying between the Oca-El Pilar fault (north) and the Santa Marta-Bucaramanga fault (southwest). Bounding this continental block are the Sierra Nevada de Santa Marta, Perijá, Mérida, and Macizo de Santander mountain belts. These belts were formed by complex geodynamic interactions between the Caribbean Plate, the Panamá Arc, and the South American Plate, which resulted in the reactivation of major preexisting structures or inherited discontinuities. In this study we summarize published 40Ar/39Ar, fission-track, and (U-Th)/He data. The data organization takes into account the movement of different plates in time and space, major present-day regional faults, geophysical data, and precipitation patterns permitting the identification of different tectonic blocks with contrasting cooling and exhumation histories. Unraveling the cooling history of the individual blocks leads to an improved understanding of the control of preexisting faults and regional Caribbean geodynamics on the evolution of northwestern South America.


Maracaibo block Mérida Andes Santander Massif Santa Marta Ranges Perijá Ranges Low-temperature thermochronology Exhumation Cooling Age-elevation relationships Venezuelan Andes Sierra Nevada de Santa Marta Santander Massif Perijá Ranges Maracaibo Continental Block 40Ar/39Ar Fission-track (U-Th)/He Thermochronology Exhumation Transpressional tectonics Northwestern South America 



Apatite fission-track thermochronologic method


Argon-argon thermochronologic method


Units for cooling rate (Celsius degree by kilometer)


Global Position System


Units for exhumation rate (kilometers by million years)


Million years ago


Maracaibo continental block


Million year






Santander Massif


Sierra Nevada de Santa Marta


Serranía de Perijá or Perijá ranges


Uranium-lead geochronologic system


Uranium-thorium-helium thermochronologic method


Venezuelan or Mérida Andes


Zircon fission-track thermochronologic method



We thank Fabio Cediel for motivating this work. To the Universidad de Ibagué Project 15-377-INT. MAB is grateful to the BEST project, a scientific agreement between IRD (Institut de Recherche pour le Développement, France) and the Universidad de Ibagué.


  1. Amaya S (2016) Termocronología y geocronología del basamento metamórfico del Macizo de Santander, Departamento de Santander. Tesis Doctoral. Universidad Nacional de Colombia, p 174Google Scholar
  2. Amaya S, Zuluaga C, Bernet M (2017) New fission-track age constraints on the exhumation of the central Santander Massif: implications for the tectonic evolution of the Northern Andes, Colombia. Lithos 282–283:388–402. CrossRefGoogle Scholar
  3. Bermúdez MA, Kohn BP, van der Beek PA, Bernet M, O'Sullivan PB, Shagam R (2010) Spatial and temporal patterns of exhumation across the Venezuelan Andes: implications for Cenozoic Caribbean geodynamics. Tectonics 29:TC5009. CrossRefGoogle Scholar
  4. Bermúdez MA, van der Beek P, Bernet M (2011) Asynchronous Miocene–Pliocene exhumation of the central Venezuelan Andes. Geology 39:139–142. CrossRefGoogle Scholar
  5. Bermúdez MA, van der Beek PA, Bernet M (2013) Strong tectonic and weak climatic control on exhumation rates in the Venezuelan Andes. Lithosphere 5:3–16CrossRefGoogle Scholar
  6. Bermúdez MA, Kohn B, van der Beek P, Bernet M (2014) Patrones de exhumación de los Andes venezolanos: Un aporte de la termocronología y de la modelación numérica termocinemática 3D. Acta Científica 65(2): 17–27Google Scholar
  7. Bermúdez MA, Hoorn C, Bernet M, Carrillo E, van der Beek PA, Garver JI, Mora JL, Mehrkian K (2017) The detrital record of late-Miocene to Pliocene surface uplift and exhumation of the Venezuelan Andes in the Maracaibo and Barinas foreland basins. Basin Res 29:370–395CrossRefGoogle Scholar
  8. Braun J (2003) Pecube: a new finite element code to solve the heat transport equation in three dimensions in the Earth’s crust including the effects of a time-varying, finite amplitude surface topography. Comput Geosci 29:787–794CrossRefGoogle Scholar
  9. Braun J, van der Beek P, Valla P, Robert X, Herman F, Glotzbach C, Pedersen V, Perry C, Simon-Labric T, Prigent C (2012) Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics 524-525:1–28CrossRefGoogle Scholar
  10. Bucher WH (1952) Geologic structure and orogenic history of Venezuela. Geol Soc Am Mem 49:1–113Google Scholar
  11. Bustamante C, Cardona A, Saldarriaga M, García-Casco VV, Weber M (2009) Metamorfismo de los esquistos verdes y anfibolitas pertenecientes a los esquistos de Santa Marta, Sierra Nevada de Santa Marta (Colombia): ¿registro de la colisión entre el arco caribe y la margen suramericana? Revista Boletín Ciencias de la Tierra 25:7–26Google Scholar
  12. Caballero V, Mora A, Quintero I, Blanco V, Parra M, Rojas LE, Lopez C, Sánchez N, Horton BK, Stockli D, Duddy I (2013) Tectonic controls on sedimentation in an intermontane hinterland basin adjacent to inversion structures: the Nuevo Mundo syncline, Middle Magdalena Valley, Colombia. Geol Soc Lond, Spec Publ 377(1):315–342CrossRefGoogle Scholar
  13. Cardona A, Cordani UG, MacDonald WD (2006) Tectonic correlations of pre-Mesozoic crust from the northern termination of the Colombian Andes, Caribbean region. J S Am Earth Sci 21:337–354CrossRefGoogle Scholar
  14. Cardona A, Valencia V, Garzón A, Montes C, Ojeda G, Ruiz J, Weber M (2010) Permian to Triassic I to S-type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: tectonic setting and implications within Pangea paleogeography. J S Am Earth Sci 29(4):772–783CrossRefGoogle Scholar
  15. Cediel F, Shaw RP, Cáceres C (2003) Tectonic assembly of the Northern Andean Block, in C. Bartolini, R.T. Buffler, and J. Blickwede, eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics, Am Assoc Petrol Geol, Memoir 79, 815–848Google Scholar
  16. Colletta B, Roure F, De Toni B, Loureiro D, Passalacqua H, Gou Y (1997) Tectonic inheritance, crustal architecture, and contrasting structural styles in the Venezuelan Andes. Tectonics 16:777–794CrossRefGoogle Scholar
  17. Colmenares L, Zoback MD (2003) Stress field and seismotectonics of northern South America. Geology 31:721–724CrossRefGoogle Scholar
  18. Cordani UG, Cardona A, Jiménez DM, Liu D, Nutran AP (2005) Geochronology of Proterozoic basement inliers in the Colombian Andes: tectonic history of remnants of a fragmented Grenville belt. In: Vaughan APM, Leat PT, Pankhurst RJ (eds) Terrane processes at the margins of Gondwana. Geological society, London, special publications, vol 246, pp 329–346Google Scholar
  19. Diederix H, Hernández C, Torres E, Osorio J, Botero P (2009) Preliminary results of the first paleoseismologic study along the Bucaramanga fault, Colombia. I+D (9) 2 p 18–23Google Scholar
  20. Doolan BL (1970) The structure and metamorphism of the Santa Marta area Colombia, South America. PhD thesis, State University of New York (USA), Binghamton, N.Y. p 200Google Scholar
  21. Dörr W, Grösser JR, Rodriguez GI, Kramm U (1995) Zircon U–Pb age of the Paramo Rico tonalite–granodiorite, Santander Massif (Cordillera Oriental, Colombia) and its geotectonic significance. J S Am Earth Sci 8(2):187–194CrossRefGoogle Scholar
  22. Egbue O, Kellogg J (2010) Pleistocene to present North Andean “escape”. Tectonophysics 489:248–257. CrossRefGoogle Scholar
  23. Gómez J, Nivia Á, Montes NE, Almanza MF, Alcárcel FA, Madrid CA (2015) Notas explicativas: Mapa Geológico de Colombia. En: Gómez, J. & Almanza, M.F. (Editores), Compilando la geología de Colombia: Una visión a 2015. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 33 p 9–33 BogotáGoogle Scholar
  24. Hackley PC, Urbani F, Karlsen AW, Garrity CP (2005) Geologic shaded relief map of Venezuela, U.S. geological survey open file report, 2005–1038Google Scholar
  25. Herman F, Seward D, Valla PG, Carter A, Kohn B, Willett SD, Ehlers TA (2013) Worldwide acceleration of mountain erosion under a cooling climate. Nature 504(7480):423–426CrossRefGoogle Scholar
  26. Hoorn C, Guerrero J, Sarmiento GA, Lorente MA (1995) Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23:237–240CrossRefGoogle Scholar
  27. Hoorn C, Wesselingh FP, ter Steege H, Bermúdez MA, Mora AJ, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo J, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Sarkinen T, Antonelli A (2010) Amazonia through time: the far-reaching effect of Andean uplift on landscape evolution and biota. Science 330(6006):927–931. CrossRefGoogle Scholar
  28. Idárraga-García J, Romero J (2010) Neotectonic study of the Santa Marta fault system, western foothills of the Sierra Nevada de Santa Marta, Colombia. J S Am Earth Sci 29:849–860CrossRefGoogle Scholar
  29. Kohn B, Shagam R, Banks P, Burkley L (1984) Mesozoic–Pleistocene fission track ages on rocks of the Venezuelan Andes and their tectonic implications. Geol Soc Am Mem 162:365–384Google Scholar
  30. van der Lelij R, Spikings R, Mora A (2016) Thermochronology and tectonics of the Mérida Andes and the Santander massif, NW South America. Lithos 248–251:220–239. CrossRefGoogle Scholar
  31. Mantilla LC, Mendoza H, Bissig T, Craig H (2011) Nuevas evidencias sobre el magmatismo miocenico en el distrito minero de vetas-california (Macizo de Santander, Cordillera Oriental, Colombia). Boletín de Geología 33:43–58Google Scholar
  32. Miller JB (1962) Tectonic trends in sierra de Perija and adjacent parts of Venezuela and Colombia. Am Assoc Pet Geol Bull 46(9):1565–1595Google Scholar
  33. Mora A, Parra M, Strecker MR, Sobel ER, Hooghiemstra H, Torres V, Jaramillo JV (2008) Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Geol Soc Am Bull 120:930–949CrossRefGoogle Scholar
  34. Mora A, Goana T, Kley J, Montoya D, Parra M, Quiroz LJ, Reyes G, Strecker MR (2009) The role of inherited extensional fault segmentation and linkage in contractional orogenesis: a reconstruction of lower Cretaceous inverted rift basins in the Eastern Cordillera of Colombia. Basin Res 21:111–137CrossRefGoogle Scholar
  35. Mora A, Parra M, Strecker MF, Sobel ER, Zeilinger G, Jaramillo C, Da Silva SF, Blanco M (2010) The eastern foothills of the Eastern Cordillera of Colombia: an example of multiple factors controlling structural styles and active tectonics. Geol Soc Am Bull 122:1846–1864CrossRefGoogle Scholar
  36. Mora A, Parra M, Forero G, Blanco V, Moreno N, Caballero V, Stockli D, Duddy I, Global B (2015) What drives orogenic asymmetry in the Northern Andes?: a case study from the apex of the Northern Andean Orocline, in C. Bartolini and P. Mann, eds., Petroleum geology and potential of the Colombian Caribbean Margin: AAPG Memoir 108 p 547–586, 13880_ch20_ptg01_547–586.indd 547 10/27/15 10:43 AMGoogle Scholar
  37. Ordoñez O, Pimentel MM, De Moraes R (2002) Granulitas de Los Mangos: un fragmento grenviliano en la parte SE de la Sierra Nevada de Santa Marta: Revista Academia Colombiana de Ciencias, 26 p 169–179Google Scholar
  38. Parra M, Mora A, Sobel ER, Strecker MR, Jaramillo C, González R (2009) Episodic orogenic-front migration in the northern Andes: constraints from low temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics 28.
  39. Parra M, Mora A, Jaramillo C, Torres V, Zeilinger G, Strecker M (2010) Tectonic controls on Cenozoic foreland basin development in the north-eastern Andes. Colombia Basin Res 22(p):874–903Google Scholar
  40. Pindell JL (1993) Regional synopsis of Gulf of Mexico and Caribbean evolution. Mesozoic and Early Cenozoic development of the Gulf of Mexico and Caribbean region: a context for hydrocarbon exploration. Selected Papers Presented at the G.C.S.S.E.P.M Foundation Thirteenth Annual Research Conference: 251–274Google Scholar
  41. Piraquive A (2017) Cadre structurel, déformations et exhumation des Schistes du Santa Marta: accumulation et histoire de déformation d’un terrain caraïbe au nord de la Sierra Nevada de Santa Marta. Sciences de la Terre. Université Grenoble Alpes, p. 395. Google Scholar
  42. Restrepo-Pace PA (1995) Late Precambrian to Early Mesozoic tectonic evolution of the Colombian Andes, based on new geochronological geochemical and isotopic data. [PhD Thesis, University of Arizona, USA], p 195Google Scholar
  43. Restrepo-Pace PA, Ruiz J, Gehrels G, Cosca M (1997) Geochronology and Nd isotopic data of Grenvilleage rocks in the Colombian Andes: new constraints for late Proterozoic-early Paleozoic paleocontinental reconstructions of the Americas. Earth Planet Sci Lett 150:427–441CrossRefGoogle Scholar
  44. Ryan WBF, Carbotte SM, Coplan JO, O'Hara S, Melkonian A, Arko R, Weissel RA, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10:Q03014. CrossRefGoogle Scholar
  45. Shagam R (1975) The northern termination of the Andes. In: Nairn AE, Stehli FG (eds) The ocean basins and margins, vol 3. Plenum Press, New York, pp 325–420Google Scholar
  46. Shagam R, Kohn BP, Banks P, Dasch L, Vargas R, Rodríguez G, Pimentel N (1984) Tectonic implications of Cretaceous–Pliocene fission track ages from rocks of the circum-Maracaibo Basin region of western Venezuela and eastern Colombia. Geol Soc Am Mem 162:385–412Google Scholar
  47. Stüwe K, White L, Brown R (1994) The influence of eroding topography on steady state isotherms. Application fission track analysis. Earth Planet Sci Lett 124:63–74CrossRefGoogle Scholar
  48. Tschanz CM, Marvin RF, Cruz J, Mehnert HH, Cebula GT (1974) Geologic evolution of the Sierra Nevada de Santa Marta, northeastern Colombia. Geol Soc Am Bull 85:273–284CrossRefGoogle Scholar
  49. Villagómez D (2010) Thermochronology, geochronology and geochemistry of the Western and Central Cordilleras and Sierra Nevada de Santa Marta, Colombia: the tectonic evolution of NW South America. PhD Thesis, Université de Géneve, p 143. ISBN 978-2940472-01-7Google Scholar
  50. Villagómez D, Spikings RA (2013) Thermochronology and tectonics of the Central and Western cordilleras of Colombia: Early Cretaceous–tertiary evolution of the Northern Andes. Lithos 160–161:228–249CrossRefGoogle Scholar
  51. Villagómez D, Spikings R, Mora A, Guzmán G, Ojeda G, Cortés E, and van der Lelij R (2011) Vertical tectonics at a continental crust-oceanic plateau plate boundary zone: fission track thermochronology of the Sierra Nevada de Santa Marta, Colombia. Tectonics 30(4), TC4008:1–18Google Scholar
  52. Ward DE, Goldsmith R, Jaime B, Restrepo HA (1974) Geology of quadrangles H-12, H-13, and parts of I-12 and I-13, (zone III) in northeastern Santander department. U.S. Geological Survey, ColombiaCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mauricio A. Bermúdez
    • 1
    Email author
  • Matthias Bernet
    • 2
  • Barry P. Kohn
    • 3
  • Stephanie Brichau
    • 4
  1. 1.Escuela de Ingeniería GeológicaUniversidad Pedagógica y Tecnológica de ColombiaSogamosoColombia
  2. 2.Institut des Sciences de la TerreUniversité Grenoble AlpesGrenobleFrance
  3. 3.School of Earth SciencesUniversity of MelbourneMelbourneAustralia
  4. 4.Geosciences Environment ToulouseUniversité Paul SabatierToulouseFrance

Personalised recommendations