Morphotectonic and Orogenic Development of the Northern Andes of Colombia: A Low-Temperature Thermochronology Perspective

  • Sergio A. Restrepo-MorenoEmail author
  • David A. Foster
  • Matthias Bernet
  • Kyoungwon Min
  • Santiago Noriega
Part of the Frontiers in Earth Sciences book series (FRONTIERS)


Landscapes in mountain belts evolve through complex feedback mechanisms between internal and external processes. Modern orogenic belts, such as the Andes, are the result of millions of years of continuing internal and external processes. Therefore, mountain ranges are rich repositories of geomorphic and tectonic information. Established techniques in low temperature thermochronology (LTTC), e.g., fission-track and (U-Th)/He dating, present novel opportunities to quantitatively explore key morphotectonic processes in the upper crust, e.g., the cooling of rocks as they move toward the Earth’s surface during exhumation, via erosion, normal faulting, and/or crustal thinning. We address the Late Mesozoic-Cenozoic morphotectonic and orogenic history of the Northern Andes of Colombia using detailed compilations and analysis of existing LTTC datasets, in an effort to define the spatial distribution, timing, and magnitude of the main orogenic phases in the region, while providing an up-to-date morphotectonic picture of the Northern Andes.


Colombia Northern Andes Meso-Cenozoic Geodynamic history Orogenic phases Uplift Landscape evolution Low-temperature thermochronology Fission-track dating Helium dating 



Age-elevation relationship for LTTC data


Apatite fission-track dating


Apatite partial annealing zone for fission tracks in FT dating LTTC


Apatite uranium-thorium/helium dating


Antioqueño Plateau


Central Cordillera


Cauca-Romeral Fault System


Eastern Cordillera


Fission-track dating


Goodness of fit in LTTC modeling


Laser ablation inductively coupled plasma mass spectrometry


Low-temperature thermochronology




Mean track length in fission-track analyses


Northern Andes Block or NorAndean Block


Partial annealing zone for fission tracks in FT dating LTTC


Panama-Chocó Block


From its definition in Spanish as “Provincia Litosférica Oceánica Cretácica Occidental”


From its definition in Spanish as “Provincia Litosférica Continental Mesoproterozoica Grenvilliana”


Partial retention zone for helium in (U-Th)/He dating LTTC


Sierra Nevada de Santa Marta


Sierra Nevada del Cocuy


Western Cordillera


Zircon uranium-thorium/helium dating


Zircon fission-track dating


Zircon partial annealing zone for fission tracks in FT dating LTTC


  1. Aalto R, Dunne T, Guyot JL (2006) Geomorphic controls on Andean denudation rates. J Geol 11:85–99Google Scholar
  2. Acosta J, Lonergan L, Coward M (2004) Oblique transpression in the western thrust front of the Colombian Eastern Cordillera. J South Am Earth Sci 17(3):181–194Google Scholar
  3. Ahnert F (1970) Functional relationships between denudation, relief, and uplift in large mid-latitude basins. Am J Sci 268:243–263Google Scholar
  4. Álvarez J (1983) Geología de la Cordillera Central y el occidente colombiano y petroquímica de los intrusivos granitoides Meso-Cenozoicos. Boletín Geológico de Ingeominas 26(2):1–175Google Scholar
  5. Amano K, Taira A (1992) Two-phase uplift of Higher Himalayas since 17 Ma. Geology 20(5):391–394Google Scholar
  6. Amaya S, Zuluaga CA, Bernet M (2017) New fission-track age constraints on the exhumation of the central Santander Massif: Implications for the tectonic evolution of the Northern Andes, Colombia. Lithos 282:388–402Google Scholar
  7. Amaya-Ferreira S (2016) Termocronología y Geocronología Del Basamento Metamórfico del Macizo de Santander, Departamento de Santander, Colombia. [PhD Thesis]. Universidad Nacional de Colombia, Bogotá p 172Google Scholar
  8. Anderson VJ (2015) Uplift and exhumation of the Eastern Cordillera of Colombia and its interactions with climate [PhD Thesis]. University of Texas, Austin USA, p 185Google Scholar
  9. Anderson VJ, Saylor JE, Shanahan TM, Horton BK (2015) Paleoelevation records from lipid biomarkers: application to the tropical Andes. Geol Soc Am Bull 127(11–12):1604–1616Google Scholar
  10. Anderson VJ, Horton BK, Saylor JE, Mora A, Tesón E, Breecker DO, Ketcham RA (2016) Andean topographic growth and basement uplift in southern Colombia: Implications for the evolution of the Magdalena, Orinoco, and Amazon river systems. Geosphere 12(4):1235–1256Google Scholar
  11. Andriessen PAM, Helmens KF, Hooghiemstra H, Riezebos PA, van der Hammen T (1993) Absolute chronology of the PlioceneQuaternary sediment sequence of the Bogota area, Colombia. Quat Sci Rev 12:483–501Google Scholar
  12. Arancibia G, Matthews SJ, De Arce CP (2006) K-Ar and Ar-40/Ar-39 geochronology of supergene processes in the Atacama Desert, Northern Chile: tectonic and climatic relations. J Geol Soc 163:107–118Google Scholar
  13. Arias LA (1995) El relieve de la zona central de Antioquia: un palimpsesto de eventos tectónicos y climáticos. Revista Faculta de Ingeniería Universidad de Antioquia 10:9–24Google Scholar
  14. Arias L (1996) Altiplanos y cañones en Antioquia: una mirada genética. Revista Facultad de Ingeniería Universidad de Antioquia 8(2):84–96Google Scholar
  15. Aspden J, McCourt WJ (1986) A Mesozoic oceanic terrane in the central Andes of Colombia. Geology 14:415–418Google Scholar
  16. Aspden JA, McCourt WJ, Brook M (1987) Geometrical control of subduction-related magmatism – the Mesozoic and Cenozoic plutonic history of western Colombia. J Geol Soc Lond 144:893–905Google Scholar
  17. Avouac JP, Burov EB (1996) Erosion as a driving mechanism of intracontinental mountain growth. J Geophys Res 17:747–717, 769Google Scholar
  18. Bakioglu KB (2014) Garzón Massif basement tectonics: a geopyhysical study. Upper Magdalena Valley, Colombia: University of South CarolinaGoogle Scholar
  19. Barbosa-Espitia AA, Restrepo-Moreno SA, Pardo A, Osorio J, Ochoa D (2013) Uplift and exhumation of the southernmost segment of the Western Cordillera (Colombia) and development of the neighboring Tumaco Basin, in Proceedings 2013 GSA Annual Meeting 125th Anniversary of GSA, Denver CO USA, 2013, vol 45, Geological Society of America Abstracts with Programs, p 542Google Scholar
  20. Barnes JB, Ehlers TA, McQuarrie N, O’Sullivan PB, Pelletier JD (2006) Eocene to recent variations in erosion across the central Andean foldthrust belt, northern Bolivia: implications for plateau evolution. Earth Planet Sci Lett 248(1–2):118–133Google Scholar
  21. Barrero D, Pardo A, Vargas CA, Martinez JI (2007) Colombian sedimentary basins: nomenclature, boundaries and petroleum geology, a new proposal. Agencia Nacional de Hidrocarburos – A.N.H.Google Scholar
  22. Bayona G, Cortés M, Jaramillo C, Ojeda G, Aristizabal JJ, Reyes-Harker A (2008) An integrated analysis of an orogen–sedimentary basin pair: Latest Cretaceous–Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. GSA Bull 120(9–10):1171–1197Google Scholar
  23. Bayona G, Montes C, Cardona A, Jaramillo C, Ojeda G, Valencia V (2011) Intraplate subsidence and basin filling adjacent to an oceanic arc–continental collision; a case from the Southern Caribbean–South America plate margin. Basin Res 23:403–422Google Scholar
  24. Bayona G, Cardona A, Jaramillo C, Mora A, Montes C, Valencia V, Ayala C, Montenegro O, Ibañez-Mejia M (2012) Early Paleogene magmatism in the northern Andes: insights on the effects of Oceanic Plateau–continent convergence. Earth Planet Sci Lett 331–332:97–111Google Scholar
  25. Beaumont C, Fullsack P, Hamilton J (1992) Erosional control of active compressional orogens. In: McClay KR (ed) Thrust tectonics. Chapman and Hall, New York, pp 1–18Google Scholar
  26. Beaumont C, Jamieson RA, Nguyen M, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414(6865):738–742Google Scholar
  27. Benjamin MT, Johnson NM, Naeser CW (1987) Recent rapid uplift in the Bolivian Andes: evidence from fission track dating. Geology 15:680–683Google Scholar
  28. Bernet M (2009) A field-based estimate of the zircon fission-track closure temperature. Chem Geol 259:181–189Google Scholar
  29. Bernet M, Spiegel C (2004) Detrital thermochronology—provenance analysis, exhumation, and landscape evolution of mountain belts. Geological Society of AmericaSpecial Paper 378. Geological Society of America, BoulderGoogle Scholar
  30. Berry EW (1919) Fossil plants from Bolivia and their bearing upon the age of uplift of the eastern Andes. US Government Printing OfficeGoogle Scholar
  31. Bierman PR (2004) Rock to sediment – slope to sea with Be-10 – rates of landscape change. Annu Rev Earth Planet Sci 32:215–255Google Scholar
  32. Bird P (1988) Formation of the Rocky Mountains, western United States – a continuum computer model. Science 239(4847):1501–1507Google Scholar
  33. Bishop P (2007) Long-term landscape evolution: linking tectonics and surface processes. Earth Surf Process Landf 32(3):329–365Google Scholar
  34. Bonini WE, Hargraves RB, Shagam R (1984) The Caribbean-South American plate boundary and regional tectonics. Geological Society of AmericaGoogle Scholar
  35. Botero G (1963) Contribución al conocimiento de la geología de la zona central de Antioquia. Anales Facultad de Minas Medellín 57:7–101Google Scholar
  36. Branket Y et al (2012) Andean deformation and rift inversion, eastern edge of Cordillera Oriental (Guateque–Medina area), Colombia. J South Am Earth Sci 15:391–407Google Scholar
  37. Braun J (2003) Pecube: a new finite element code to solve the heat transport equation in three dimensions in the Earth’s crust including the effects of a time-varying, finite amplitude surface topography. Comput Geosci 29:787–794Google Scholar
  38. Brown RW, Summerfield MA (1997) Some uncertainties in the derivation of rates of denudation from thermochronologic data. Earth Surf Process Landf 22:239–248Google Scholar
  39. Brown RW, Summerfield MA, Gleadow AJW (1994) Apatite fission track analysis: its potential for the estimation of denudation rates and implications for models of long-term landscape development. In: Kirby MJ (ed) Process models and theoretical geomorphology. Willey, Chichester, pp 23–53Google Scholar
  40. Buchs DM, Arculus RJ, Baumgartner PO, Baumgartner-Mora C, Ulianov A (2010) Late Cretaceous arc development on the SW margin of the Caribbean Plate: insights from the Golfito, Costa Rica, and Azuero, Panama, complexes. Geochem Geophys Geosyst 11(7):1–35Google Scholar
  41. Burbank DW, Anderson RS (2011) Tectonic geomorphology. Wiley, Chichester UK, 460 pGoogle Scholar
  42. Burbank DW, Pinter N (1999) Landscape evolution: the interactions of tectonics and surface processes. Basin Res 11:1–6Google Scholar
  43. Burbank DW, Derry LA, Lanord CF (1993) Reduced Himalayan sediment production 8 Ma ago despite an intensified monsoon. Nature 364:48–50Google Scholar
  44. Burke K, Cooper C, Dewey JF, Mann P, Pindell JL (1984) Caribbean tectonics and relative plate motions. Geol Soc Am Mem 162:31–64Google Scholar
  45. Bustamante C, Cardona A, Bayona G, Mora AR, Valencia V, Gehrels GE, Vervoort J (2010) U-Pb LA-ICP-MS geochronology and regional correlation of Middle Jurassic intrusive rocks from the Garzón Massif, Upper Magdalena Valley and Central Cordillera, southern Colombia. Boletin de Geologia 32:93–109Google Scholar
  46. Bustamante C, Archanjo CJ, Cardona A, Vervoort JD (2016) Late Jurassic to Early Cretaceous plutonism in the Colombian Andes: a record of long-term arc maturity. Geol Soc Am Bull 128(11–12):1762–1779Google Scholar
  47. Camargo S (2014) Estructura litosférica asociada a la Sierra Nevada de Santa Marta a partir de datos de gravimetría, magnetometría y sismología. In: Proceedings Latin-American and Caribbean Seismological Commision Bogotá Colombia, Volume Poster session, LACSCGoogle Scholar
  48. Cardona A, Valencia VA, Bayona G, Duque J, Ducea M, Gehrels G, Jaramillo C, Montes C, Ojeda G, Ruiz J (2010) Early-subduction-related orogeny in the northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta Massif and Rancheria Basin, northern Colombia: Terra Nova 23(1):26–34Google Scholar
  49. Cardona A, Valencia V, Weber M, Duque J, Montes C, Ojeda G, Reiners P, Domanik K, Nicolescu S, Villagomez D (2011) Transient Cenozoic tectonic stages in the southern margin of the Caribbean plate: U-Th/He thermochronological constraints from Eocene plutonic rocks in the Santa Marta massif and Serranía de Jarara, northern Colombia. Geologica Acta 9(3–4):445–466Google Scholar
  50. Cardona-Molina A, Cordani UG, MacDonald WD (2006) Tectonic correlations of pre-Mesozoic crust from the northern termination of the Colombian Andes, Caribbean region. J South Am Earth Sci 21(4):337–354Google Scholar
  51. Carrapa B (2010) Resolving tectonic problems by dating detrital minerals. Geology 38(2):191–192Google Scholar
  52. Case JE, Duran LG, Lopez A, Moore WR (1971) Tectonic Investigations in Western Colombia and Eastern Panama. GSA Bull 82(10):2685–2712Google Scholar
  53. Cediel F, Shaw R, Caceres C (2003) Tectonic assembly of the northern Andean Block. In: Bartolini C, Buffler R, Blickwede J (eds) The circum-gulf of Mexico and Caribbean: hydrocarbon habitats, basin formation and plate tectonics, v. 79. AAPG Memoir, Tulsa, pp 815–848Google Scholar
  54. Cediel F, Restrepo I, Marín-Cerón MI, Duque-Caro H, Cuartas C, Mora C, Montenegro G, García E, Tovar D, Muñoz G (2009) Geology and Hydrocarbon Potential, Atrato and San Juan Basins, Chocó (Panamá) Arc. Tumaco Basin (Pacific Realm), Colombia, Medellín, Colombia, Fondo Editorial Universidad EAFIT, p 172Google Scholar
  55. Cediel F, Leal-Mejia H, Shaw R, Melgarego J, Restrepo-Pace P (2011) Petroleum geology of Colombia: regional geology of Colombia. Fondo Editorial U. Eafit, Ed 1:220Google Scholar
  56. Chew DM, Donelick RA (2012) Combined apatite fission track and U-Pb dating by LA-ICP-MS and its application in apatite provenance analysis. Quantitative mineralogy and microanalysis of sediments and sedimentary rocks: Mineralogical Association of Canada Short Course, 42:219–247Google Scholar
  57. Chicangana G (2005) The Romeral fault system: a shear and deformed extinct subduction zone between oceanic and continental lithospheres in northwestern South America. Earth Sci Res J 9(1):50–64Google Scholar
  58. Chorowicz J, Chotin P, Guillande R (1996) The Garzon fault: active southwestern boundary of the Caribbean plate in Colombia. Geologische Rundschau 85(1):172–179Google Scholar
  59. Clift PD (2010) Enhanced global continental erosion and exhumation driven by Oligo-Miocene climate change. Geophys Res Lett 37:1–6Google Scholar
  60. Coates AG, Stallard RF (2013) How old is the Isthmus of Panama? Bull Mar Sci 89(4):801–813Google Scholar
  61. Coates AG, Collins LS, Aury M-P, Berggren WA (2004) The geology of the Darien, Panama, and the late Miocene-Pliocene collision of the Panama arc with northwestern South America. GSA Bull 116(11/12):1327–1344Google Scholar
  62. Cochrane R (2013) U-Pb thermochronology, geochronology and geochemistry of NW South America: rift to drift transition, active margin dynamics and implications for the volume balance of continents. University of GenevaGoogle Scholar
  63. Colmenares F (2007) Evolución Geohistorica de la Sierra Nevada de Santa Marta. INGEOMINAS, Bogotá, p 397Google Scholar
  64. Colmenares L, Zoback MD (2003) Stress field and seismotectonics of northern South America. Geology 31(8):721–724Google Scholar
  65. Coltorti M, Ollier CF (1999) The significance of high planation surfaces in the Andes of Ecuador. In: Smith BJ, Whalley WB, Warke PA (eds) Uplift, erosion and stability: perspectives on long-term landscape development, vol Volume 162. Geological Society, London, pp 239–253Google Scholar
  66. Coltorti M, Ollier CD (2000) Geomorphic and tectonic evolution of the Ecuadorian Andes. Geomorphology 32(1–2):1–19Google Scholar
  67. Copeland P, Harrison TM, Heizler MT (1990) 40Ar/39Ar singlecrystal dating of detrital muscovite and K-feldspar from Leg 116, southern Bengal Fan: implications for the uplift and erosion of the Himalayas. Proc Ocean Drill Progr Sci 116:93–114Google Scholar
  68. Correa I, Silva JC (1999) Estratigrafía y Petrografía del Miembro Superior de la Formación Amagá en la Sección El Cinco-Venecia-Quebrada La Sucia. Venecia, Antoquia, BSc: Universidad EAFIT, p 47Google Scholar
  69. Cortes M, Angelier J (2005) Current states of stress in the Northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics 403:29–58Google Scholar
  70. Cortés M, Angelier J, Colletta B (2005) Paleostress evolution of the northern Andes (Eastern Cordillera of Colombia): Implications on plate kinematics of the South Caribbean region. Tectonics 24(1): 1-27Google Scholar
  71. Cortés M, Colletta B, Angelier J (2006) Structure and tectonics of the central segment of the Eastern Cordillera of Colombia. J South Am Earth Sci 21(4):437–465Google Scholar
  72. Coughlin TJ, O’Sullivan P, Kohn BP, Holcombe RJ (1998) Apatite fission-track thermochronology of the Sierras Pampeanas, central western Argentina: implications for the mechanism of plateau uplift in the Andes. Geology 26(11):999–1002Google Scholar
  73. Cross TA, Pilger RH (1982) Controls of subduction geometry, location of magmatic arcs, and tectonics of arc and back-arc regions. Geol Soc Am Bull 93(6):545–562Google Scholar
  74. Crowhurst PV, Green PF, Kamp PJJ (2002) Appraisal of (U-Th)/He apatite thermochronology as a thermal history tool for hydrocarbon exploration: an example from the Taranaki Basin, New Zealand. AAPG Bull 86(10):1801–1819Google Scholar
  75. Dalziel I (1986) Collision and Cordilleran orogenesis: an Andean perspective. Geol Soc (London, Special Publications) 19(1):389–404Google Scholar
  76. Davis WM (1899) The geographical cycle. Geogr J 14:481–504Google Scholar
  77. Davis WM (1922) Peneplains and the geographical cycle. Geol Soc Am Bull 23:587–598Google Scholar
  78. Dengo CA, Covey MC (1993) Structure of the Eastern Cordillera of Colombia: implications for trap styles and regional tectonics. AAPG Bull 77(8):1315–1337Google Scholar
  79. Dewey JF, Bird JM (1970) Plate tectonics and geosynclines. Tectonophysics 10(5–6):625–638Google Scholar
  80. Dickinson WR, Gehrels GE (2008) U-Pb ages of detrital zircons in relation to paleogeography: triassic paleodrainage networks and sediment dispersal across southwest Laurentia. J Sediment Res 78(11–12):745–764Google Scholar
  81. Donelick RA, Ketcham RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics II: crystallographic orientation effects. Am Mineral 84:1224–1234Google Scholar
  82. Donelick RA, O’Sullivan PB, Ketcham RA (2005) Apatite fission-track analysis. In: Reiners PW, Ehlers TA (eds) Low-temperature thermochronology: techniques, interpretations, and applications, Reviews in mineralogy and geochemistry, vol Volume 58. Chantilly, MSA, pp 49–94Google Scholar
  83. Douglas I (1967) Man, vegetation and the sediment yield of rivers. Nature 215:925–928Google Scholar
  84. Duddy IR, Green PF, Laslett GM (1988) Thermal annealing of fission tracks in apatite 3. Variable temperature behavior. Chem Geol 73:25–38Google Scholar
  85. Dumitru TA, Gans PB, Foster DA, Miller EL (1991) Refrigeration of the western Cordilleran lithosphere during Laramide shallow-angle subduction. Geology 19(11):1145–1148Google Scholar
  86. Duque-Caro H (1990a) The Choco Block in the northwestern corner of South America: structural, tectonostratigraphic and paleogeographic implications. J South Am Earth Sci 3(1):71–84Google Scholar
  87. Duque-Caro H. (1990b) Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology, 77(3-4):203–234Google Scholar
  88. Ego F, Sébrier M, Yepes H (1995) Is the Cauca-Patia and Romeral fault system left or right lateral? Geophys Res Lett 22(1):33–36Google Scholar
  89. Ehlers TA, Farley KA (2003) Apatite (U-Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Planet Sci Lett 206:1–14Google Scholar
  90. Ehlers TA, Poulsen CJ (2009) Influence of Andean uplift on climate and paleoaltimetry estimates. Earth Planet Sci Lett 281:238–248Google Scholar
  91. England P, Molnar P (1990) Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18(12):1173–1177Google Scholar
  92. English JM, Johnston ST (2004) The Laramide orogeny: what were the driving forces? Int Geol Rev 46(9):833–838Google Scholar
  93. Espurt N, Baby P, Brusset SMR, Hermoza W, Barbarand J (2010) The Nazca Ridge and uplift of the Fitzcarrald Arch: implications for regional geology in northern South America. In: Hoorn C, Wesselingh FP (eds) Amazonia, landscape and species evolution: a look into the past. Wiley-Blackwell, London, p 464Google Scholar
  94. Etayo-Serna F (1986) Mapa de Terrenos Geológicos de Colombia, Publicación Geológica Especial INGEOMINAS, vol 14. INGEOMINAS, Bogotá, pp 1–235Google Scholar
  95. Farley KA (2000) Helium diffusion from apatite: general behavior as illustrated by Durango Fuorapatite. J Geophys Res 105:2903–2914Google Scholar
  96. Farley KA (2002) (U-Th)/He dating: techniques, calibrations, and applications. Rev Miner Geochem 47:819–844Google Scholar
  97. Farley KA, Stockli DF (2002) (U-Th)/He dating of phosphates: apatite, monazite, and xenotime. Rev Miner Geochem 48:559–577Google Scholar
  98. Farris DW, Restrepo-Moreno SA, Jaramillo C, Bayona G, Montes C, Cardona A, Reiners P, Mora A, Speakman RJ, Glasscock MD (2011) Evolution of the Panamanian Isthmus. Geology 39(11):1007–1010Google Scholar
  99. Feininger T, Botero G (1982) The Antioquian Batholith, Colombia, Bogotá, Publicación Geológica Especial Ingeominas, Publicaciones Geológicas Especiales, pp 1–50Google Scholar
  100. Feininger T, Barrero D, Castro N (1972) Geología de parte de los departamentos de Antioquia y Caldas (Sub-zona II-B). Boletín Geológico Ingeominas 20(2):1–173Google Scholar
  101. Fitzgerald PG (1994) Thermochronologic constraints on post-Paleozoic tectonic evolution of the central Transantarctic Mountains, Antarctica. Tectonics 13(4):818–836Google Scholar
  102. Flowers RM, Kelley SA (2011) Interpreting data dispersion and “inverted” dates in apatite (U–Th)/He and fission-track datasets: an example from the US midcontinent. Geochimica et Cosmochimica Acta 75(18):5169–5186Google Scholar
  103. Flowers RM, Wernicke P, Farley KA (2008) Unroofing, incision, and uplift history of the southwestern Colorado Plateau from apatite (U-Th)/He thermochronometry. GSA Bull 120(5/6):571–587Google Scholar
  104. Forero A (1990) The basement of the Eastern Cordillera, Colombia: an allochthonous terrane in northwestern South America. J South Am Earth Sci 3:141–151Google Scholar
  105. Foster DA, Gleadow AJW (1996) Structural framework and denudation history of the flanks of the Kenya and Anza Rifts, East Africa. Tectonics 15(2):258–271Google Scholar
  106. Foster DA, Gleadow AJW, Mortimer G (1994) Rapid Pliocene exhumation in the Karakoram (Pakistan) revealed by fission-track thermochronology of the K2 gneiss. Geology 22:19–22Google Scholar
  107. Galbraith R (2005) Statistics for fission track analysis. Chapman & Hall/CRC, Interdisciplinary Statistics, Boca Raton, p 240Google Scholar
  108. Gallagher K (2013) QTQt User Guide v 5Google Scholar
  109. Gallagher K, Brown RW, Johnson C (1998) Geological applications of fission-track analysis. Ann Rev Earth Planet Sci 26:519–572Google Scholar
  110. Gallagher K, Stephenson J, Brown R, Holmes C, Ballester P (2005a) Exploiting 3D spatial sampling in inverse modeling of thermochronologic data. Rev Mineral Geochem 48:375–387Google Scholar
  111. Gallagher K, Stephenson J, Brown R, Holmes C, Fitzgerald P (2005b) Low temperature thermochronology and modeling strategies for multiple samples 1: vertical profiles. Earth Planet Sci Lett 237:193–208Google Scholar
  112. Gansser A (1955) Ein Beitrag zur Geologie und Petrographie der Sierra Nevada de Santa Marta (Kolumbien, Sudamerika). Schweizerische Mineralogische und Petrographische Mitteilungen 35(2):209–279Google Scholar
  113. Gansser A (1973) Facts and theories on the Andes Twenty-sixth William Smith Lecture. J Geol Soc 129(2):93–131Google Scholar
  114. Garzon-Varon F (2012) Modelamiento estructural de la zona límite entre la Microplaca de Panamá y el Bloque Norandino a partir de la interpretación de imágenes de radar, cartografía geológica, anomalías de campos potenciales y líneas sísmicas. MSc Universidad Nacional de Colombia, 102 pGoogle Scholar
  115. Gehrels G (2012) Detrital zircon U-Pb geochronology: current methods and new opportunities. In: Busby C, Azor A (ed) Tectonics of sedimentary basins: Recent advances. Willey, pp 45–62.Google Scholar
  116. Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC-) ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth and Planetary Sci Letters, 249(1-2):47–61Google Scholar
  117. Gerya TV, Fossati D, Cantieni C, Seward D (2009) Dynamic effects of aseismic ridge subduction: numerical modelling. Europ J Mineral 21(3):649–661Google Scholar
  118. Ghosh P, Garzione CN, Eiler JM (2006) Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. Science 311:511–514Google Scholar
  119. Gleadow AJW (1981) Fission track dating methods: What are the real alternatives?. Nucl Tracks Radiat Meas 5:3–14Google Scholar
  120. Gleadow AJW, Brown RW (1999) Fission track thermochronology and the long-term denudational response to tectonics. In: Summerfield MA (ed) Geomorphology and global tectonics. Wiley, Chichester, pp 57–75Google Scholar
  121. Gleadow AJW, Fitzgerald PG (1987) Uplift history and structure of the transantarctic mountains: new evidence from fission track dating of basement apatites in the dry valleys area, southern Victoria Land. Earth Planet Sci Lett 82:1–14Google Scholar
  122. Gleadow AJW, Duddy IR, Green PF, Lovering JF (1986) Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contrib Miner Petrol 94:405–415Google Scholar
  123. Gleadow AJW, Belton DX, Kohn BP, Brown RW (2002) Fission track dating of phosphate minerals and the thermochronology of apatite. Rev Mineral Geochem 48:579–630Google Scholar
  124. Goldsmith R, Marvina R, Mehnert HH (1971) Radiometric ages in the Santander massif, eastern Cordillera, Colombian Andes. US Geol Surv Prof Pap 750:D44–D49Google Scholar
  125. Gomez E (2001) Tectonic controls on the Late Cretaceous to Cenozoic sedimentary fill of the Middle Magdalena Valley Basin, Eastern Cordillera and Llanos Basin, Colombia [Ph.D] Cornell University, p 619Google Scholar
  126. Gomez E, Jordan TE, Allmendinger RW, Hegarty K, Kelley S (2005a) Syntectonic Cenozoic sedimentation in the northern middle Magdalena Valley Basin of Colombia and implications for exhumation of the Northern Andes. Geol Soc Am Bull 117(5–6):547–569Google Scholar
  127. Gomez E, Jordan TE, Allmendinger RW, Cardozo N (2005b) Development of the Colombian foreland-basin system as a consequence of the diachronous exhumation of the northern Andes. Geol Soc Am Bull 117(9):1272–1292Google Scholar
  128. Gomez J, Montes NE, Alcárcel FA, Ceballos JA (2015a) Catálogo de dataciones radiométricas de Colombia en ArcGIS y Google Earth. In: Gomez J, Almanza MF (eds) Compilando la geología de Colombia: Una visión a 2015, vol Volume 33. Servicio Geológico Colombiano, Bogotá, pp 63–419Google Scholar
  129. Gomez J, Nivia Á, Montes NE, Almanza MF, Alcárcel F, Madrid CA (2015b) Notas explicativas: Mapa Geológico de Colombia, Bogotá, Servicio Geológico Colombiano, Compilando la geología de Colombia: Una visión a 2015, v. Publicaciones Geológicas Especiales, pp 35–60Google Scholar
  130. González H, Londoño AC (2002a) Catálogo de las unidades litoestratigráficas de Colombia, Monzodiorita de Farallones (Batolito de Farallones) Nmdf: INGEOMINASGoogle Scholar
  131. González H, Londoño AC (2002b) Catálogo de las unidades litoestratigráficas de Colombia, Monzodiorita de la Horqueta (Stock de La Horqueta) Nmdh, Cordillera Occidental Departamento de Antioquia: INGEOMINASGoogle Scholar
  132. González H, Londoño AC (2002c) Catálogo de las unidades litoestratigráficas de Colombia, Tonalita de Tatamá (N1tt) Cordillera Occidental Departamento del Chocó: INGEOMINASGoogle Scholar
  133. Goudie AS (1995) The changing earth: rates of geomorphological processes. Wiley-Blackwell, New Jersey p 352Google Scholar
  134. Green PF (1981) A new look at statistics in fission track dating. Nuclear Tracks 5(1–2):77–86Google Scholar
  135. Green PF, Duddy IR, Laslett GM, Hegarty KA, Gleadow AJW, Lovering JF (1989) Thermal annealing of fission tracks in apatite 4. Quantitative modeling techniques and extension to geological time scales. Chem Geol 79:155–182Google Scholar
  136. Gregory-Wodzicki KM (2000) Uplift history of the central and northern Andes: a review. GSA Bull 112:1091–1105Google Scholar
  137. Grosse E (1926) El Terciario Carbonífero de Antioquia. D. Reimer-E. Vohsen, Berlin, p 361Google Scholar
  138. Grujic D, Coutand I, Bookhagen B, Bonnet S, Blythe A, Duncan C (2006) Climatic forcing of erosion, landscape, and tectonics in the Bhutan Himalayas. Geology 34(10):801–804Google Scholar
  139. Grujic D, Warren CJ, Wooden JL (2011) Rapid synconvergent exhumation of Miocene-aged lower orogenic crust in the eastern Himalaya. Lithosphere 3(5):346–366Google Scholar
  140. Gubbels T, Isacks B, Farrar E (1993) High-level surfaces, plateau uplift, and foreland development, Bolivian central Andes. Geology 21(8):695–698Google Scholar
  141. Gunnell Y (1998) Present, past and potential denudation rates: is there a link? Tentative evidence from fission-track data, river sediment loads and terrain analysis in the South Indian shield. Geomorphology 25:135–153Google Scholar
  142. Gutscher MA, Malavieille J, Lallemand S, Collot J-Y (1999) Tectonic segmentation of the northern Andean margin: impact of the Carnegie Ridge collision. Earth Planet Sci Lett 168:255–270Google Scholar
  143. Hack JT (1976) Dynamic equilibrium and landscape evolution. In: Melborn W, Flernal R (eds) Theories of landforms development. State University of New York Publications in Geomorphology, Binghamton, pp 87–102Google Scholar
  144. Harris SE, Mix AC (2002) Climate and tectonic influences on continental erosion of tropical South America, 0-13 Ma. Geology 30(5):447–450Google Scholar
  145. Harrison TM, Copeland P, Hall SA, Quade J, Burner S, Ojha TP, Kidd WSF (1993) Isotopic preservation of Himalayan/Tibetan uplift, denudation, and climatic histories of two molasse deposits. J Geol 1001(2):157–175Google Scholar
  146. Hartley A J (2003) Andean uplift and climate change. J Geol Soc Lond 160:7–10Google Scholar
  147. Hasebe N, Barbarand J, Jarvis K, Carter A, Hurford AJ (2004) Apatite fission-track chronometry using laser ablation ICP-MS. Chem Geol 207:135–145Google Scholar
  148. Heimsath AM (2006) Eroding the land: Steady-state and stochastic rates and processes through a cosmogenic lens. Geol Soc Am Spec Pap 415:111–129Google Scholar
  149. Hengl T, Reuter HI (eds) (2008) Geomorphometry: Concepts, Software, Applications. Developments in Soil Science, 33, Elsevier, p 772Google Scholar
  150. Herman F, Seward D, Valla PG, Carter A, Kohn B, Willett SD, Ehlers TA (2013) Worldwide acceleration of mountain erosion under a cooling climate. Nature 504(7480):423Google Scholar
  151. Hetzel R, Dunkl I, Haider V, Strobl M, von Eynatten H, Ding L, Frei D (2011) Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift. Geology 39(10):983–986Google Scholar
  152. Holmes A. (1965). Principles of Physical Geology. Revised Edition. Nelson.Google Scholar
  153. Hooghiemstra H (1989) Quaternary and Upper-Pliocene glaciations and forest development in the Tropical Andes: evidence from a long high-resolution pollen record from the sedimentary basin of Bogota, Colombia. Palaeogeogr Palaeoclimatol Palaeoecol 72:11–26Google Scholar
  154. Hooghiemstra H, Wijninga VM, Cleef AM (2006) The paleobotanical record of Colombia: implications for biogeography and biodiversity. Ann Missouri Bot Gard 93(2):297Google Scholar
  155. Hooke RL (2000) On the history of humans as geomorphic agents. Geology 28(9):843–846Google Scholar
  156. Hoorn C, Flantua S (2015) An early start for the Panama land bridge. Science 348(6231):186–187Google Scholar
  157. Hoorn C, Guerrero J, Sarmiento GA, Lorente MA (1995) Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23(3):237–240Google Scholar
  158. Hoorn C, Wesselingh FP, Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927. CrossRefGoogle Scholar
  159. Horton BK, Parra M, Saylor JE, Nie J, Mora A, Torres V, Stockli DF, Strecker MR (2010a) Resolving uplift of the northern Andes using detrital zircon age signatures. GSA Today 20(7):4–10Google Scholar
  160. Horton BK, Saylor JE, Nie J, Mora A, Parra M, Reyes-Harker A, Stockli DF (2010b) Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages. Eastern Cordillera, Colombia GSA BulletinGoogle Scholar
  161. House MA, Wernicke BP, Farley KA (1998) Dating topography of the Sierra Nevada, California, using apatite (U-Th)/He ages. Nature 396:66–69Google Scholar
  162. House M, Kohn BP, Farley KA, Raza A (2002) Evaluating thermal history models for the Otway Basin, southeastern Australia, using (U-Th)/He and fission-track data from borehole apatites. Tectonophysics 349(1–4):277–295Google Scholar
  163. Hurford AJ, Green PF (1983) The zeta age calibration of fission track dating. Isotope Geosci 1:285–317Google Scholar
  164. Insel N, Ehlers TA, Schaller M, Barnes JB, Tawackoli S, Poulsen CJ (2010a) Spatial and temporal variability in denudation across the Bolivian Andes from multiple geochronometers. Geomorphology 122:65–77Google Scholar
  165. Insel N, Poulsen CJ, Ehlers TA (2010b) Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Clim Dyn 35(7–8):1477–1492Google Scholar
  166. Irving EM (1975) Structural evolution of the northernmost Andes, Colombia. U.S. Geol Surv Prof Pap 846:47Google Scholar
  167. James KJ (2006) Arguments for an against the Pacific origin of the Caribbean Plate: discussion, finding for an inter-American orogin. Geologica Acta 4(1–2):279–302Google Scholar
  168. Jiang JH, Wu DL, Eckermann SD (2002) Upper Atmosphere Research Satellite (UARS) MLS observation of mountain waves over the Andes. J Geophys Res Atmos 107(D20):SOL15-11–SOL15-10Google Scholar
  169. Jordán TE, Isacks BL, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca plate. Geol Soc Am Bull 94(3):341–361Google Scholar
  170. Kellogg JN (1984) Cenozoic tectonic history of the Sierra de Perijá, Venezuela-Colombia, and adjacent basins. Geological Society of America Memoir 162:239–261Google Scholar
  171. Kellogg JN, Vega V (1995) Tectonic development of Panama, Costa Rica, and the Colombian Andes: Constraints from global positioning system geodetic studies and gravity. In: Mann P (ed) Geologic and tectonic development of the Caribbean plate boundary in southern Central America: Geological Society of America Special Paper, vol 295, Geological Society of America, pp 75–90Google Scholar
  172. Kennan L (2000) Large-scale geomorphology of the Andes: interrelationships of tectonics, magmatism and climate. In: Summerfield MA (ed) Geomorphology and global tectonics. John Wiley, New York, pp 167–199Google Scholar
  173. Kennan L, Lamb S, Hoke L (1997) High-altitude palaeosurfaces in the Bolivian Andes: evidence for late Cenozoic surface uplift. In: Widdowson M (ed) Palaeosurfaces: recognition, reconstruction and paleoenvironmental interpretation, vol Volume 120. Geological Society of London Special Publication, London, pp 307–324Google Scholar
  174. Kennan L, Pindell L (2009) Dextral shear, terrane accretion and basin formation in the Northern Andes: best explained by interaction with a Pacific-derived Caribbean Plate? Geological Society, London, Special Publications 328(1):487–531Google Scholar
  175. Kerr AC, Marriner GF, Tarney J, Nivia A, Saunders AD, Thirlwall MF, Sinton CW (1997) Cretaceous basaltic terranes in Western Colombia: elemental, chronological and Sr–Nd Isotopic Constraints on petrogenesis. J Petrol 38:677–702Google Scholar
  176. Ketcham RA (2003) Observations on the relationship between crystallographic orientation and biasing in apatite fission-track measurements. Am Mineral 88:817–829Google Scholar
  177. Ketcham RA (2005) Forward and inverse modeling of low-temperature thermochronometry data. Rev Mineral Geochem 48:275–314Google Scholar
  178. Ketcham RA (2008) HeFTy: Viola, Idaho, Apatite to Zircon, IncGoogle Scholar
  179. Ketcham RA, Donelick RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics III: extrapolation to geological time scales. Am Mineral 84:1235–1255Google Scholar
  180. Kirchner JW, Finkel RC, Riebe CS, Granger DE, Clayton JL, King JG, Megahan WF (2001) Mountain erosion over 10 yr, 10 ky, and 10 my time scales. Geology 29(7):591–594Google Scholar
  181. Kohn BR, Shagam R, Banks PO, Burkley LA (1984) Mesozoic-Pleistocene fission-track ages on rocks of the Venezuelan Andes and their tectonic implications. In: Bonini WE, Hargraves RB, Shagam R (eds) The Caribbean-South American plate boundary and regional tectonics, Geological Society of America Memoir, vol 162. Geological Society of America, Boulder, pp 365–384Google Scholar
  182. Koons PO (1990) The two-sided wedge in orogeny; erosion and collision from the sand box to the Southern Alps, New Zealand. Geology 18:679–682Google Scholar
  183. Koons P (1998) Big mountains, big rivers, and hot rocks. EOS (Transactions of the American Geophysical Union) 79:908Google Scholar
  184. Kroonenberg SB, Bakker JGM, Van der Wiel AM (1990) Late Cenozoic uplift and paleogeography of the Colombian Andes – constraints on the development of high-Andean biota. Geologie en Mijnbouw 69(3):279–290Google Scholar
  185. Lal R (2001) Soil degradation by erosion. Land Degrad Dev 12(6):519–539Google Scholar
  186. Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425:792–797Google Scholar
  187. Laslett GM, Green PF, Duddy IR, Gleadow AJW (1987) Thermal annealing of fission tracks in apatite 2. A Quantitative analysis. Chem Geol 73:25–38Google Scholar
  188. Laubacher G, Naeser CW (1994) Fission-track dating of granitic rocks from the Eastern Cordillera of Peru: evidence for Late Jurassic and Cenozoic cooling. J Geol Soc Lond 151(3):473–483Google Scholar
  189. Leal-Mejía H, Shaw RP, Melgarejo JC (2011) Phanerozoic granitoid magmatism in Colombia and the tectono-magmatic evolution of the Colombian Andes. In: Cediel F (ed) Petroleum Geology of Colombia. Regional Geology of Colombia, vol 1. Bogotá Colombia, Agencia Nacional de Hidro-carburos (ANH) – EAFIT, pp 109–188Google Scholar
  190. van der Lelij R, Spikings R, Mora A (2016) Thermochronology and tectonics of the Mérida Andes and the Santander Massif, NW South America. Lithos 248:220–239Google Scholar
  191. Lisker F, Ventura B, Glasmacher AU (2009) Apatite thermochronology in modern geology. Geol Soc Lond Spec Publ 324:1–23Google Scholar
  192. Lüschen E (1986) Gravity and height changes in the ocean-continent transition zone in western Colombia. Tectonophysics 130(1–4):141151–146157Google Scholar
  193. MacDonald WD, Estrada JJ, Sierra GM, Gonzalez H (1996) Late Cenozoic tectonics and paleomagnetism of North Cauca Basin intrusions, Colombian Andes: dual rotation modes. Tectonophysics 261:277–289Google Scholar
  194. Mann P, Burke K (1984) Neotectonics of the Caribbean. Rev Geophys 22(4):309–362Google Scholar
  195. Mann P, Corrigan J (1990) Model for late Neogene deformation in Panama. Geology 18:558–562Google Scholar
  196. Marín-Cerón MI, Restrepo-Moreno SA, Bernet M, Foster DA, Min K, Pardo-Trujillo A, Barbosa-Espitia A, Kamenov G (2015) The Amagá formation (Eocene?-Miocene) in the Cauca-Patía depression: A recorder of major morphotectonic and paleogeographic events between the Western and Central cordilleras. In: Proceedings GSA Annual Meeting, Baltimore, Maryland, USA, vol 47, Geological Society of America Abstracts with Programs, p 675Google Scholar
  197. Marshall LG, Butler RF, Drake RE, Curtis GH, Tedford RH (1979) Calibration of the great American interchange. Science 204(4390):272–279Google Scholar
  198. Matmon A, Bierman P, Larsen J, Southworth S, Pavich M, Caffee M (2003) Temporally and spatially uniform rates of erosion in the southern Appalachian Great Smoky Mountains. Geology 31(2):155–158Google Scholar
  199. Maya M, González H (1995) Unidades litodémicas en la Cordillera Central de Colombia. Bol Geol INGEOMINAS 35(2):3Google Scholar
  200. McCourt WJ, Aspden JA, Brook M (1984) New geological and geochronological data from the Colombian Andes: continental growth by multiple accretion. J Geol Soc Lond 141:793–802Google Scholar
  201. Mégard F (1984) The Andean orogenic period and its major structures in central and northern Peru. J Geol Soc Lond 141(5):893–900Google Scholar
  202. Mégard F, Noble DC, McKee EH (1984) Multiple pulses of Neogene compressive deformation in the Ayacucho intermontane basin, Andes of Central Peru. Geol Soc Am Bull 95:1108–1117Google Scholar
  203. Milliman JD (2001) Delivery and fate of fluvial water and sediment to the sea: a marine geologist’s view of European rivers. Scientia Marina 65:121–131Google Scholar
  204. Milliman JD, Meade RH (1983) World-wide delivery of river sediment to the oceans. J Geol 91(1):1–21Google Scholar
  205. Mittermeier RA, Meyer N, Mittermeier CG (1999) Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions, Monterrey, Mexico, Conservation International and Agrupacion Sierra Madre, p 432Google Scholar
  206. Molnar P (2004) Late Cenozoic increase in accumulation rates of terrestrial sediment: how might climate change have affected erosion rates? Ann Rev Earth Planet Sci 32:67–89Google Scholar
  207. Molnar P (2008) Closing of the Central American Seaway and the Ice Age: a critical review. Paleoceanography 23(PA2201).
  208. Molnar P, England PC (1990) Late cenozoic uplift of mountain-ranges and global climate change – chicken or egg? Nature 346:29–34Google Scholar
  209. Molnar P, England P, Martinod J (1993) Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Rev Geophys 31(4):357–396Google Scholar
  210. Montes C, Robert D, Hatcher RD, Restrepo-Pace PA (2005) Tectonic reconstruction of the northern Andean blocks: Oblique convergence and rotations derived from the kinematics of the Piedras-Girardot area, Colombia. Tectonophysics 399(1–4):221–250Google Scholar
  211. Montes C, Guzman G, Bayona G, Cardona A, Valencia V, Jaramillo C (2010) Clockwise rotation of the Santa Marta massif and simultaneous Paleogene to Neogene deformation of the Plato-San Jorge and Cesar-Ranchería basins. J South Am Earth Sci 29(4):832–848Google Scholar
  212. Montes C, Bayona G, Cardona A, Buchs DM, Silva C, Morón S, Hoyos N, Ramírez D, Jaramillo C, Valencia V (2012a) Arc-continent collision and orocline formation: closing of the Central American seaway. J Geophys Res Solid Earth 117(B4):1–25Google Scholar
  213. Montes C, Cardona A, McFadden R, Morón S, Silva C, Restrepo-Moreno S, Ramírez D, Hoyos N, Wilson J, Farris D, Bayona GA, Jaramillo CA, Valencia V, Bryan J, Flores JA (2012b) Evidence for middle Eocene and younger land emergence in central Panama: implications for Isthmus closure. Geol Soc Am Bull 124(5–6):780–799Google Scholar
  214. Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC, Valencia V, Ayala C, Pérez-Angel LC, Rodriguez-Parra LA, Ramirez V, Niño H (2015) Middle Miocene closure of the Central American Seaway. Science 348(6231):226–229Google Scholar
  215. Montes-Correa LF (2007) Exhumación de las rocas metamórficas de alto grado que afloran al Oriente del Valle de Aburrá, Antioquia [MSc: Universidad EAFIT], p 134Google Scholar
  216. Montgomery DR (2003) Predicting landscape-scale erosion rates using digital elevation models. C. R. Geosci Surf Geosci 35:112111130Google Scholar
  217. Montgomery DR (2007) Soil erosion and agricultural sustainability. Proc Natl Acad Sci 104(33):13268–13272Google Scholar
  218. Montgomery DR (2008) Dirt: the Erosion of Civilizations. University of California Press,  Berkeley p 296Google Scholar
  219. Montgomery DR, Brandon MT (2002) Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet Sci Lett 201(3):481–489Google Scholar
  220. Montgomery DR, Balco G, Willett SD (2001) Climate, tectonics, and the morphology of the Andes. Geology 29(7):579–582Google Scholar
  221. Moore MA, England PC (2001) On the inference of denudation rates from cooling ages of minerals. Earth Planet Sci Lett 158:265–284Google Scholar
  222. Mora A, Parra M, Strecker MR, Sobel ER, Hooghiemstra H, Torres V, Vallejo-Jaramillo J (2008) Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. GSA Bull 120(7–8):930–949Google Scholar
  223. Mora A, Baby P, Roddaz M, Parra M, Brusset S, Hermoza W, Espurt N (2010a) Tectonic history of the Andes and sub-Andean zones: implications for the development of the Amazon drainage basin. In: Hoorn C, Wesselingh FP (eds) Amazonia, landscape and species evolution: a look into the past. Blackwell Publishing, Chichester p 464Google Scholar
  224. Mora A, Horton BK, Mesa A, Rubiano J, Ketcham RA, Parra M, Blanco V, Garcia D, Stockli DF (2010b) Migration of Cenozoic deformation in the Eastern Cordillera of Colombia interpreted from fission track results and structural relationships: implications for petroleum systems. AAPG Bull 94(10):1543–1580Google Scholar
  225. Mora A, Reyes-Harker A, Rodriguez G, Tesón E, Ramirez-Arias JC, Parra M, Caballero V, Mora JP, Quintero I, Valencia V (2013) Inversion tectonics under increasing rates of shortening and sedimentation: cenozoic example from the Eastern Cordillera of Colombia. Geol Soc Lond Spec Publ 377(1):411–442Google Scholar
  226. Nelson E (1982) Post-tectonic uplift of the Cordillera Darwin orogenic core complex: evidence from fission track geochronology and closing temperature–time relationships. J Geol Soc 139(6):755–761Google Scholar
  227. Noriega-Londoño S (2016) Geomorfología tectónica del noroccidente de la Cordillera Central, Andes del Norte-Colombia [MSc: Universidad Nacional de Colombia–Sede Medellin], 179 pGoogle Scholar
  228. Norris RJ, Cooper AF (1997) Erosional control on the structural evolution of a transpressional thrust complex on the Alpine Fault, New Zealand. J Struct Geol 19(10):1323–1342Google Scholar
  229. O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA et al (2016) Formation of the Isthmus of Panama. Sci Adv 2(8):1–11Google Scholar
  230. Ochoa D, Hoorn C, Jaramillo C, Bayona G, Parra M, De la Parra F (2012) The final phase of tropical lowland conditions in the axial zone of the Eastern Cordillera of Colombia: evidence from three palynological records. J South Am Earth Sci 39:157–169Google Scholar
  231. Oldow JS, Blly AW, Avé Lallemant HG (1990) Transpression, orogenic float, and lithospheric balance. Geology 18(10):991–994Google Scholar
  232. Ollier CD (2006) Mountain uplift and the neotectonic period. Ann Geophys 49(1):437–450Google Scholar
  233. Ollier CD, Pain CF (2000) The origin of mountains. Routledge, London, p 368Google Scholar
  234. Oppenheim V (1941) Geología de la Cordillera Oriental entre los Llanos y el Magdalena. Revista Academia Colombiana de Ciencias Exactas, Físicas y Naturales 14:175–181Google Scholar
  235. Osadetz K, Kohn B, Feinstein S, O’Sullivan P (2002) Thermal history of Canadian Williston basin from apatite fission-track thermochronology—implications for petroleum systems and geodynamic history. Tectonophysics 349(1):221–249Google Scholar
  236. Padilla L (1981) Geomorfologia de posibles areas peneplanizadas en la Cordillera Occidental de Colombia. Revista CIAF 6:391–402Google Scholar
  237. Page WD, James ME (1981) The antiquity of the erosion surfaces and late Cenozoic deposits near Medellín Colombia: implications to tectonics and erosion rates. Revista CIAF 6(1–3):421–454Google Scholar
  238. Pardo A, Silva JC, Cardona A, Restrepo-Moreno SA, Osorio JA, Borrero C (2012a) Estudio geológico integrado en la Cuenca Tumaco Onshore. Síntesis cartográfica, sísmica y análisis bioestratigráfico, petrográfico, geocronológico, termocronológico y geoquímico de testigos de perforación y muestras de superficie: Agencia Nacional de HidrocarburosGoogle Scholar
  239. Pardo A, Silva JC, Cardona A, Restrepo-Moreno SA, Osorio JA, Borrero C (2012b) Estudio integrado de los núcleos y registros obtenidos de los pozos someros (slim holes) perforados por la ANH: Agencia Nacional de HidrocarburosGoogle Scholar
  240. Pardo-Casas F, Molnar P (1987) Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time. Tectonics 6(3):233–248Google Scholar
  241. Pardo-Trujillo A, Restrepo-Moreno SA, Vallejo DF, Flores JA, Trejos R, Foster D, Barbosa-Espitia AA, Bernet M, Marin-Ceron M, Kamenov G (2015) New thermotectonic and paleo-environmental constraints from the Western Cordillera and associated sedimentary basins (Northern Andes, Colombia): the birth of a major orographic barrier and the Choco Bio-geographic region?. In: Proceedings 2015 GSA Annual Meeting, Baltimore, Maryland, 2015, vol 47, Geological Society of America Abstracts with Programs, p 156Google Scholar
  242. Parra M, Mora A, Jaramillo C, Strecker MR, Sobel ER, Quiroz L, Rueda M, Torres V (2009) Orogenic wedge advance in the northern Andes: evidence from the Oligocene-Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia. GSA Bull 121(5–6):780–800Google Scholar
  243. Parra M, Mora A, Lopez C, Rojas LE, Horton BK (2012) Detecting earliest shortening and deformation advance in thrust belt hinterlands: example from the Colombian Andes. Geology 40(2):175–178Google Scholar
  244. Pavlis TL, Hamburger MW, Pavlis GL (1997) Erosional processes as a control on the structural evolution of an actively deforming fold thrust belt: an example from the Pamir-Tien Shan region, Central Asia. Tectonics 16:810–822Google Scholar
  245. Peizhen Z, Molnar P, Downs WR (2001) Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature 410(6831):891Google Scholar
  246. Penk W (1953) Morphological analysis of landforms. Macmillan, London, p 429Google Scholar
  247. Pennington WD (1981) Subduction of the Eastern Panama Basin and Seismotectonics of Northwestern South-America. J Geophys Res 86(NB11):753–770Google Scholar
  248. Peyton SL, Carrapa B (2013) An overview of low-temperature thermochronology in the Rocky Mountains and its application to petroleum system analysisGoogle Scholar
  249. Pilger RH (1984) Cenozoic plate kinematics, subduction and magmatism: South American Andes. J Geol Soc Lond 141(5): 793-802.Google Scholar
  250. Pindell J, Kennan L, Maresch WV, Stasnek K-P, Draper G, Higgs R (2005) Plate Kinematic and crustal dynamics of circum-Caribbean arc continent Interactions: tectonics controls on basin development in the Proto-Caribbean margins. In: Avé-Lallemant HG, Sisson VB (eds) Caribbean-South American Plate interactions, Venezuela, vol Volume 394. Geological Society of America, Boulder, pp 7–52Google Scholar
  251. Pindell J, Kennan L, Stanek KP, Maresch WV, Draper G (2006) Foundations of Gulf of Mexico and Caribbean evolution: eight controversies resolved. Geologica Acta 4(1–2):303–341Google Scholar
  252. Pinet P, Souriau M (1988) Continental Erosion and large-scale relief. Tectonics 7(3):563–582Google Scholar
  253. Pinter N, Brandon M (1997) How erosion builds mountains. Sci Am 276(44):74–79Google Scholar
  254. Piraquive A, Pinzón E, Kammer A, Bernet M, von Quadt A (2017) Early Neogene unroofing of the Sierra Nevada de Santa Marta, as determined from detrital geothermochronology and the petrology of clastic basin sediments. GSA Bull 130 (3-4): 355-380Google Scholar
  255. Piraquive-Bermúdez A (2016) Structural Framework, deformation and exhumation of the Santa Marta Schists: accretion and deformational history of a Caribbean Terrane at the north of the Sierra Nevada de Santa Marta [Ph.D.]. Universidad Nacional de Colombia, 394 pGoogle Scholar
  256. Piraquive Bermúdez A, Pinzón E, Bernet M, Kammer A, Von Quadt A, Sarmiento G (2016) Early Neogene unroofing of the Sierra Nevada de Santa Marta along the Bucaramanga-Santa Marta Fault. In: Proceedings EGU General Assembly Conference Abstracts 2016, vol 18, p 17214Google Scholar
  257. Poulsen CJ, Ehlers TA, Insel N (2010) Onset of Convective Rainfall During Gradual Late Miocene Rise of the Central Andes. Science 328(5977):490–493Google Scholar
  258. Poveda G, Mesa OJ (2000) On the existencoef Lloró (the rainies locality on Earth): enhanced ocean-land-atmosphere interaction by a Low-Level Jet. Geophys Res Lett 27(11):1675–1678Google Scholar
  259. Poveda E, Monsalve G, Vargas CA (2015) Receiver functions and crustal structure of the northwestern Andean region, Colombia. J Geophys Res Solid Earth 120(4):2408–2425Google Scholar
  260. Ramírez DA, López A, Sierra GM, Toro G (2006) Edad y proveniencia de las rocas volcánico sedimentarias de la Formación Combia en el Suroccidente Antioqueño, Colombia. Boletín de Ciencias de la Tierra 19:9–26Google Scholar
  261. Ramírez DA, Foster DA, Min K, Montes C, Cardona A, Sadove G (2016) Exhumation of the Panama basement complex and basins: implications for the closure of the Central American seaway. Geochem Geophys Geosyst 10(1002):1–20Google Scholar
  262. Ramos VA (1999) Plate tectonic setting of the Andean Cordillera. Episodes 22:183–190Google Scholar
  263. Ramos VA (2009) Anatomy and global context of the Andes: main geologic features and the Andean orogenic cycle. Geol Soc Am Mem 204:31–65Google Scholar
  264. Raymo ME (1994) The Himalayas, organic-carbon burial, and climate in the miocene. Paleoceanography 9(3):399–404Google Scholar
  265. Raymo ME, Ruddiman WF (1992) Tectonic forcing of late cenozoic climate. Nature 359(6391):117–122Google Scholar
  266. Reiners PW (2005) Zircon (U-Th)/He Thermochronometry. Rev Mineral Geochem 58:151–179Google Scholar
  267. Reiners PW, Brandon MT (2006) Using thermochronology to understand orogenic erosion. Ann Rev Earth Planet Sci 34:419–466Google Scholar
  268. Reiners PW, Campbell IH, Nicolescu S, Allen CM, Hourigan JK, Garver JI, Mattinson JM, Cowan DS (2005) (U-Th)/(He-Pb) double dating of detrital zircons. American Journal of Science, 305(4), 259–311Google Scholar
  269. Reiners PW, Ehlers TA (2005a) In: Rosso J (ed) Low-temperature thermochronology: techniques, interpretations, and applications. Mineralogical Society of America, Chantilly p 622Google Scholar
  270. Reiners PW, Ehlers TA (2005b) Past, present, and future of thermochronology. Rev Mineral Geochem 58:1–18Google Scholar
  271. Reiners PW, Shuster DL (2009) Thermochronology and landscape evolution. Physics Today 62:31–36Google Scholar
  272. Reiners PW, Spell TL, Nicolescu S, Zanetti KA (2004) Zircon (U-Th)/He thermochronometry: he diffusion and comparisons with 40Ar/39Ar dating. Geochim Cosmochim Acta 68:1857–1887Google Scholar
  273. Restrepo JJ (2008) Obducción y metamorfismo de ofiolitas Triásicas en el flanco occidental del terreno Tahamí. Cordillera Central de Colombia: Boletín de Ciencias de la Tierra, No. 22Google Scholar
  274. Restrepo JD, Kjerfve B (2000) Magdalena river: interannual variability (1975–1995) and revised water discharge and sediment load estimates. J Hydrol 235:137–149Google Scholar
  275. Restrepo JD, Syvitski JPM (2006) Assessing the effect of natural controls and land use change on sediment yield in a major Andean River: the Magdalena Drainage Basin, Colombia. Ambio 35(2):65–74Google Scholar
  276. Restrepo JJ, Toussaint JF (1982) Metamorfismos superpuestos en la Cordillera Central de Colombia. In: Proceedings Memorias V Congreso Latinoamericano de Geología, Buenos Aires, Argentina, pp 505–512Google Scholar
  277. Restrepo JJ, Toussaint JF (1988) Terranes and continental accretion in the Colombian Andes. Episodes 11(1):189–193Google Scholar
  278. Restrepo JJ, Toussaint JF (1990) Cenozoic arc magmatism of northwestern Colombia. Geol Soc Am Spec Pap 241:205–212Google Scholar
  279. Restrepo J, Toussaint J, González H (1981) Edades Mio-pliocenas del magmatismo asociado a la Formación Combia, departamentos de Antioquia y Caldas, Colombia. Geología Norandina 3:21–26Google Scholar
  280. Restrepo JD, Kjerfve B, Hermelin M, Restrepo JC (2006) Factors controlling sediment yield in a major South American drainage basin: the Magdalena River, Colombia. J Hydrol 316:213–232Google Scholar
  281. Restrepo JJ, Carmona OO, Martens U, Correa AM (2009) Terrenos, complejos y provincias en la Cordillera Central de Colombia. Ingeniería Investigación y Desarrollo 9(2):49–56Google Scholar
  282. Restrepo-Moreno SA (2009) Long-term morphotectonic Evolution and Denudation Chronology of the Antioqueño Plateau, Cordillera Central, Colombia [PhD], University of Florida, 223 pGoogle Scholar
  283. Restrepo-Moreno SA, Restrepo-Múnera MA (2007) La Erosión: Un Problema a los Pies de la Sociedad: EOLO. Revista Ambiental-Fundación CON-VIDA 5(11):17–27Google Scholar
  284. Restrepo-Moreno SA, Foster DA, Kamenov GD (2007) Formation Age and Magma Sources for the Antioqueño Batholith Derived from LA-ICP-MS Uranium–Lead Dating and Hafnium-Isotope Analysis of Zircon Grains. In: Proceedings Geological Society of America Abstracts with Programs, vol 3, no 6, GSA, pp 493–494Google Scholar
  285. Restrepo-Moreno SA, Foster DA, Kamenov GD (2009a) Crystallization Age and Magma Sources of the Antioqueño And Ovejas Batholiths, Central Cordillera, Colombia: evidence From Combined LA-ICP-MS U/Pb Dating and Hf-Isotope Analysis of Zircon Grains and Whole-Rock Geochemistry. In: Proceedings Geological Society of America Annual Meeting Abstracts with Programs, Oregon, USA, vol 41, no 7, GSA, p 222Google Scholar
  286. Restrepo-Moreno SA, Foster DA, O’Sullivan P, Donelick RA, Stockli DF (2009b) Cenozoic exhumation of the Antioqueño Plateau, Northern Andes, Colombia, from apatite low-temperature thermochronology. In: Proceedings AGU Fall Meeting, Volume abstract #T43B-2091Google Scholar
  287. Restrepo-Moreno SA, Foster DA, Stockli DF, Parra LN (2009c) Long-term erosion and exhumation of the “Altiplano Antioqueño”, Northern Andes (Colombia) from apatite (U-Th)/He thermochronology. Earth Planet Sci Lett 278(1–2):1–12Google Scholar
  288. Restrepo-Moreno SA, Cardona A, Jaramillo C, Bayona G, Montes C, Farris DW (2010) Constraining Cenozoic uplift/exhumation of the Panama-Chocó block by apatite and zircon low-temperature thermochronology: insights on the onset of collision and the morphotectonic history of the region. In: Proceedings 2010 GSA Denver Annual Meeting, Denver, CO, vol 42, Geological Society of America Abstracts with Programs, p 521Google Scholar
  289. Restrepo-Moreno SA, Min K, Barbosa-Espitia AA, Bernet M, Pardo A (2013a) Assessing the thermotectonic history of Colombia’s Western Cordillera through thermochronology/geochronology in plutonic massifs and sedimentary basins: Tectonic, geomorphic and climatic implications. In: Proceedings 2013 GSA Annual Meeting 125th Anniversary of GSA, Denver CO USA, vol 45, Geological Society of America Abstracts with Programs, p 548Google Scholar
  290. Restrepo-Moreno SA, Min K, Barbosa A, Foster DA, Bernet M, Pardo A, Marín-Cerón MI, Osorio JA, Hardwick E, Kamenov G (2013b) Thermotectonic History of Colombia’s Western Cordillera and Associated Pacific and Interandean Basins: integrated application of thermochronology/geochronology/provenance analyses. In: Proceedings AGU Fall Meeting, San FranciscoGoogle Scholar
  291. Restrepo-Moreno SA, Min K, Bernet M, Barbosa A, Marín-Cerón M, Hardwick E (2013c) Thermotectonic history of the Farallones del Citará Batholith (Colombia’s Western Cordillera) through multi-system, vertical profile thermochronology/geochronology: tectonic, geomorphic and climatic implications. In: Proceedings XIV Congreso Colombiano de Geología y Primer Simposio de Exploradores, Bogotá Colombia, vol Memorias v Sociedad Colombiana de Geología, p 533Google Scholar
  292. Restrepo-Moreno SA, Vinasco CJ, Foster DA, Min K, Noriega S, Bernet M, Marín-Cerón MI, Bermúdez M, Botero M (2015) Cenozoic accretion and morpho-tectonic response in the northern Andes (Colombia) through low-temperature thermochronology analyses/modeling. In: Proceedings GSA Annual Meeting, Baltimore, vol 47, Geological Society of America Abstracts with Programs, p 675Google Scholar
  293. Restrepo-Pace PA, Ruiz J, Gehrels G, Cosca M (1997) Geochronology and Nd isotopic data of Grenville-age rocks in the Colombian Andes: new constraints for Late Proterozoic–Early Paleozoic paleocontinental reconstructions of the Americas. Earth Planet Sci Lett 150:427–441Google Scholar
  294. Reyes-Harker A, Ruiz-Valdivieso CF, Mora A, Ramírez-Arias JC, Rodriguez G, De La Parra F, Caballero V, Parra M, Moreno N, Horton BK (2015) Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia. AAPG Bull 99(8):1407–1453Google Scholar
  295. Ring U, Brandon MT, Lister GS, Willett SD (1999) Exhumation processes: normal faulting, ductile flow and erosion, Geological Society Special Publication, vol 154. Geological Society Special Publication 378, LondonGoogle Scholar
  296. Rodríguez G, Zapata G (2012) Características del plutonismo Mioceno superior en el segmento norte de la Cordillera Occidental e implicaciones tectónicas en el modelo geológico del noroccidente colombiano: Boletín de Ciencias de la Tierra, no. 31Google Scholar
  297. Roering JJ, Perron JT, Kirchner JW (2007) Functional relationships between denudation and hillslope form and relief. Earth Planet Sci Lett 264(1):245–258Google Scholar
  298. Rojas-Agramonte Y, Neubauer F, Bojar AV, Hejl E, Handler R, García-Delgado DE (2006) Geology, age and tectonic evolution of the Sierra Maestra mountains, southeastern Cuba. Geologica Acta 4(1–2):123–150Google Scholar
  299. Ruddiman WF (2013) Tectonic uplift and climate change. Springer Science & Business Media, New York p 535Google Scholar
  300. Ruddiman WF, Raymo ME, Prell WL, Kutzbach JE (1997) The uplift-climate connection: a synthesis. In: Tectonic uplift and climate change. pp 471–515, Springer, Boston, MA.Google Scholar
  301. Saeid E, Bakioglu K, Kellogg J, Leier A, Martinez J, Guerrero E (2017) Garzón Massif basement tectonics: structural control on evolution of petroleum systems in upper Magdalena and Putumayo basins, Colombia. Marine Petrol Geol 88:381–401Google Scholar
  302. Saenz EA (2003) Fission track thermochronology and denudational response to tectonics in the north of The Colombian Central Cordillera [Masters Thesis]. Shimane University Japan, 138 pGoogle Scholar
  303. Salazar G, James M, Tistl M (1991) El Complejo Santa Cecilia – La Equis: Evolución y acreción de un arco magmático en el norte de la Cordillera Occidental, Colombia. In: Proceedings Simposio Sobre Magmatismo y su Marco Tectónico, Volume Memorias 2, pp 142–106Google Scholar
  304. Sánchez J, Horton BK, Tesón E, Mora A, Ketcham RA, Stockli DF (2012) Kinematic evolution of Andean fold-thrust structures along the boundary between the Eastern Cordillera and Middle Magdalena Valley basin, Colombia. Tectonics 31(3): 1-24Google Scholar
  305. Shagam R (1975) The northern termination of the Andes. In: The Gulf of Mexico and the Caribbean. Plenum Press, New York pp 325–420Google Scholar
  306. Shagam R, Kohn BP, Banks PO, Dash LE, Vargas R, Rodriguez GI, Pimentel N (1984) Tectonic implications of Cretaceous-Pliocene fission-track ages from rocks of the circum-Maracaibo basin region of western Venezuela and eastern Colombia. In: Bonini WE, Hargraves RB, Shagam R (eds) The Caribbean-South American plate boundary and regional tectonics: Geological Society of America Memoir, vol 162. Geological Society of America, Boulder, pp 385–412Google Scholar
  307. Shen CB, Donelick RA, O’Sullivan PB, Jonckheere R, Yang Z, She ZB, Miu XL, Ge X (2012) Provenance and hinterland exhumation from LA-ICP-MS zircon U–Pb and fission-track double dating of Cretaceous sediments in the Jianghan Basin, Yangtze block, central China. Sedimentary Geology, 281:194–207Google Scholar
  308. Shuster DL, Ehlers TA, Rusmoren ME, Farley KA (2005a) Rapid glacial erosion at 1.8 Ma revealed by 4He/3He thermochronometry. Science 310(5754):1668–1670Google Scholar
  309. Shuster DL, Vasconcelos PM, Heim JA, Farley KA (2005b) Weathering geochronology by (U-Th)/He dating of goethite. Geochimica Et Cosmochimica Acta 69(3):659–673Google Scholar
  310. Sierra G, Marin-Ceron M (2011) Amagá-Cauca- Patía, Medellín Colombia, Fondo Editorial Universidad EAFIT, Petroleum Geology of Colombia, 51 pGoogle Scholar
  311. Sierra G, Silva J, Correa L (2004) Estratigrafía Secuencias de la Formación Amagá. Boletin de Ciencias de la Tierra 15:9–22Google Scholar
  312. Silva JC, Sierra GM, Correa LG (2008) Tectonic and climate driven fluctuations in the stratigraphic base level of a Cenozoic continental coal basin, northwestern Andes. J South Am Earth Sci 26:369–382Google Scholar
  313. Silva A, Mora A, Caballero V, Rodriguez G, Ruiz C, Moreno N, Parra M, Ramirez-Arias J, Ibañez M, Quintero I (2013) Basin compartmentalization and drainage evolution during rift inversion: evidence from the Eastern Cordillera of Colombia. Geological Society, London, Special Publications, vol 377, pp SP377. 315Google Scholar
  314. Sobolev SV, Babeyko AY (2010) What drives orogeny in the Andes? Geology 33(8):617–620Google Scholar
  315. Soeters R (1981) Algunos datos sobre la edad de dos superficies de erosion en la Cordillera Central de Colombia. Revista CIAF 6:525–528Google Scholar
  316. Somoza R (1998) Updated Nazca (Farallon)–South America relative motions during the last 40 My: implications for mountain building in the central Andean region. J South Am Earth Sci 11:211–215Google Scholar
  317. Spotila JA (2005) Applications of low-temperature thermochronometry to quantification of recent exhumation in mountain belts. In: Reiners PW, Ehlers TA (eds) Low-temperature thermochronology: techniques, interpretations, and applications, vol Volume 58. MSA, Chantilly, VA, pp 449–466Google Scholar
  318. Spotila JA, Farley KA, Sieh K (1998) Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreas fault, California, as constrained by radiogenic helium thermochronometry. Tectonics 17(3):360–378Google Scholar
  319. Stallard RF (1988) Weathering and erosion in the humid tropics. In: Lerman A, Meybeck M (eds) Physical and chemical weathering in geochemical cycles, vol Volume 251. Kluwer Academic, Dordrecht, pp 226–246Google Scholar
  320. Steinman G (1929) Geologie von Peru, Heidelberg, Karl Winter, 448 pGoogle Scholar
  321. Steinmann G (1922) Über die junge Hebung der Kordillere Südamerikas. Geologische Rundschau 13(1):1–8Google Scholar
  322. Steinmann G, Stappenbeck R, Sieberg AH, Lissón CI (1930) Geología del Perú, C. Winters UniversitätsbuchhandlungGoogle Scholar
  323. Stockli DF, Farley KA, Dumitru TA (2000) Calibration of the apatite (U-Th)/He thermochronometer on an exhumed fault block, White Mountains, California. Geology 28(11):983–986Google Scholar
  324. Stolar DB, Willett SD, Roe GH (2006) Climatic and tectonic forcing of a critical orogen. Spec Pap Geol Soc Am 398:241–250Google Scholar
  325. Stüwe K, Hintermueller MT (2000) Topography and isotherms revisited: the influence of laterally migrating drainage divides. Earth Planet Sci Lett 184:287–303Google Scholar
  326. Sugden DE, Summerfield MA, Burt TP (1997) Editorial: linking short-term geomorphic processes to landscape evolution. Earth Surf Proces Landf 22:193–194Google Scholar
  327. Summerfield MA (2000) Geomorphology and global tectonics. Wiley, New York. 368 pGoogle Scholar
  328. Summerfield MA (2005) The changing landscape of geomorphology. Earth Surf Proces Landf 30:779–781Google Scholar
  329. Summerfield MA, Hulton NJ (1994) Natural controls of fluvial denudation rates in major world drainage basins. J Geophys Res Solid Earth 99(B7):13871–13883Google Scholar
  330. Suter F, Sartori M, Neuwerth R, Gorin G (2008) Structural imprints at the front of the Chocó-Panamá indenter: Field data from the North Cauca Valley Basin, Central Colombia. Tectonophysics 460(1):134–157Google Scholar
  331. Syracuse EM, Maceira M, Prieto GA, Zhang H, Ammon CJ (2016) Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth Planet Sci Lett 444:139–149Google Scholar
  332. Syvitski J (2012) Anthropocene An epoch of our making. Global Change Newslett 78:12–15Google Scholar
  333. Syvitski JPM, Milliman JD (2007) Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J Geol 115(1):1–19Google Scholar
  334. Taboada A, Rivera LA, Fuenzalida A, Cisternas A, Philip H, Bijwaard H, Olaya J, Rivera C (2000) Geodynamics of the northern Andes: subductions and intracontinental deformation (Colombia). Tectonics 19(5):787–813Google Scholar
  335. Tagami T, O’Sullivan PB (2005) Fundamentals of fission-track thermochronology. In: Reiners PW, Ehlers TA (eds) Low-temperature thermochronology: techniques, interpretations, and applications, Reviews in Mineralogy and Geochemistry, vol Volume 58. MSA, Chantilly, pp 19–47Google Scholar
  336. Thomas MF (1994) Geomorphology in the tropics. A study of denudation and weathering in low latitudes. Wiley, New York. 482 pGoogle Scholar
  337. Thompson AB, Schulmann K, Jezek J (1997) Thermal evolution and exhumation in obliquely convergent (transpressive) orogens. Tectonophysics 280(1):171–184Google Scholar
  338. Toro J, Roure F, Bordas-Le Floch N, Le Cornec-Lance S, Sassi W (2004) Thermal and kinematic evolution of the Eastern Cordillera fold and thrust belt, Colombia. In: Swennen R, Roure F, Granath JW (eds) Deformation, fluid flow, and reservoir appraisal in foreland fold and thrust belts, vol Volume 1, pp 79–115Google Scholar
  339. Toro G, Hermelin M, Schwave E, Posada B, Silva D, Poupeau G (2006) Fission-track datings and long-term stability in the Central Cordillera highlands, Colombia. In: Latrubesse E (ed) Tropical Geomorphology with Special Reference to South America, vol Volume 145. Springer, Berlin, pp 1–16Google Scholar
  340. Trenkamp R, Kellogg JN, Freymueller JT, Mora HP (2002) Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. J South Am Earth Sci 15(2):157–171Google Scholar
  341. Tschanz CM, Marvin RF, Cruzb J, Mehnert HH, Cebula GT (1974) Geologic Evolution of Sierra-Nevada-De-Santa-Marta, Northeastern Colombia. Geol Soc Am Bull 85(2):273–284Google Scholar
  342. Vallejo F, Restrepo-Moreno SA, Pardo A, Trejos R, Flores JA, Plata A, Min K, Foster DA, López SA (2015) Miocene Andean uplift and its impact on planktonic communities in Eastern Equatorial Pacific basins. In: Proceedings 15th International Nannoplankton Association Meeting, Bohol, Philippines, vol 35, Special Issue Journal of Nannoplankton Research Nannoplankton Association, p 88Google Scholar
  343. Van der Beek P, Robert X, Mugnier J-L, Bernet M, Huyghe P, Labrin E (2006) Late Miocene – recent denudation of the central Himalaya and recycling in the foreland basin assessed by detrital apatite fission-track thermochronology of Siwalik sediments, Nepal. Basin Res 18:413–434Google Scholar
  344. Van Der Beek P, Van Melle J, Guillot S, Pêcher A, Reiners PW, Nicolescu S, Latif M (2009) Eocene Tibetan plateau remnants preserved in the northwest Himalaya. Nature Geosci 2(5):364Google Scholar
  345. Van der Hammen T (1957) Palynologic stratigraphy of the Sabana de Bogota (East Cordillera of Colombia). Boletín Geológico (Bogotá) 5:187–203Google Scholar
  346. Van der Hammen T (1961) Late Cretaceous and Tertiary stratigraphy and tectogenesis of the Colombian Andes. Geologie en Mijnbouw 40:181–188Google Scholar
  347. Van der Hammen T (1989) History of the montane forests of the northern Andes. Plant Syst Evol 162(1-4):109–114Google Scholar
  348. Van der Hammen T, Werner JH, van Dommelen H (1973) Palynological record of the upheaval of the Northern Andes: a study of the Pliocene and Lower Quaternary of the Colombian Eastern Cordillera and the early evolution of its High-Andean biota. Rev Paleobot Palynol 16:1–122Google Scholar
  349. Van der Hilst R, Mann P (1994) Tectonic implication of tomographic images of subducted lithosphere beneath northwestern South América. Geology 22:451–454Google Scholar
  350. Van der Lelij R, Spikings RA, Kerr AC, Kounov A, Cosca M, Chew D, Villagomez D (2010) Thermochronology and tectonics of the Leeward Antilles: evolution of the southern Caribbean Plate boundary zone. Tectonics 29:TC6003. CrossRefGoogle Scholar
  351. Van der Wiel A (1989) Uplift of the Precambrian Garzon Massif (Eastern Cordillera of the Colombian Andes) in relation to fluvial and vocaniclastic sedimentation in the adjacent Neiva Basin. In: Proceedings Abstract 28th Int. Geological Congr, pp 3-505Google Scholar
  352. Van der Wiel AM (1991) Uplift and volcanism of the SE Colombian Andes in relation to Neogene sedimentation in the Upper Magdalena Valley [Ph.D.]. University of Wageningen, 208 pGoogle Scholar
  353. Van der Wiel A, Andriessen P (1991) Precambrian to Recent thermotectonic history of the Garzon massif (Eastern Cordillera of the Colombian Andes) as revealed by fission-track analysis: Uplift and volcanism of the SE Colombian Andes in relation to Neogene sedimentation of the upper Magdalena Valley [Ph.D. Thesis]. Free University, Amsterdam WageningenGoogle Scholar
  354. Van Houten FB, Travis RB (1968) Cenozoic deposits, Upper Magdalena Valley, Colombia. Am Assoc Petrol Geol 52:675–702Google Scholar
  355. Vargas CA, Mann P (2013) Tearing and breaking off of subducted slabs as the result of Collision of the Panama arc-indenter with Northwestern South America. Bull Seismol Soc Am 103(3):2025–2046Google Scholar
  356. Velandia F, Acosta J, Terraza R, Villegas H (2005) The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia. Tectonophysics 399(1):313–329Google Scholar
  357. Velandia-Patiño FA (2018) Cinemática de las fallas mayores del Macizo de Santander – énfasis en el modelo estructural y temporalidad al sur de la Falla de Bucaramanga [PhD]. Universidad Nacional de Colombia, 229 pGoogle Scholar
  358. Vermeesch P, Tian Y (2014) Thermal history modelling: HeFTy vs QTQt. Earth-Sci Rev 139:279–290Google Scholar
  359. Villagomez-Díaz DR (2010) Thermochronology, geochronology and geochemistry of the Western and Central cordilleras and Sierra Nevada de Santa Marta, Colombia: the tectonic evolution of NW South America [PhD]. Université de Genève, 144 pGoogle Scholar
  360. Villagomez D, Spikings R (2013) Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: early Cretaceous–Tertiary evolution of the northern Andes. Lithos 160:228–249Google Scholar
  361. Villagomez D, Spikings R, Mora A, Guzmán G, Ojeda G, Cortés E, van der Lelij R (2011) Vertical tectonics at a continental crust-oceanic plateau plate boundary zone: Fission track thermochronology of the Sierra Nevada de Santa Marta, Colombia. Tectonics 30(4): 1-18Google Scholar
  362. Villamil T (1999) Campanian–Miocene tectonostratigraphy, depocenter evolution and basin development of Colombia and western Venezuela. Palaeogeogr Palaeoclimatol Palaeoecol 153:239–275Google Scholar
  363. Vinasco CJ, Cordani U (2012) Reactivation episodes of the Romeral Fault System in the northwestern part of the Central Andes, Colombia, through 39Ar-40Ar and A-Ar results. Boletín de Ciencias de la Tierra 32:111–124Google Scholar
  364. Vinasco CJ, Cordani UG, Gonzalez H, Weber M, Pelaez C (2006) Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. J South Am Earth Sci 21(4):355–371Google Scholar
  365. Walling DE (2006) Human impact on land-ocean sediment transfer by the world’s rivers. Geomorphology 79(3–4):192–216Google Scholar
  366. Ward D (1973) Geología de los cuadrángulos H-12, Bucaramanga y H-13, Pamplona, Departamento de Santander: Boletín Geológico IngeominasGoogle Scholar
  367. Weng CY, Hooghiemstra H, Duivenvoorden JF (2007) Response of pollen diversity to the climate-driven altitudinal shift of vegetation in the Colombian Andes. Philos Trans Royal Soc B Biol Sci 362(1478):253–262Google Scholar
  368. Whipple KX (2009) The influence of climate on the tectonic evolution of mountain belts. Nature Geosci 2(2):97–104Google Scholar
  369. Whipple KX, Meade BJ (2006) Orogen response to changes in climatic and tectonic forcing. Earth Planet Sci Lett 243(1–2):218–228Google Scholar
  370. Wilder DT (2003) Relative motion history of the Pacific-Nazca (Farallon) plates since 30 million years ago [Master of Science]. University of South Florida, 105 pGoogle Scholar
  371. Wilkinson BH (2005) Humans as geologic agents: a deep-time perspective. Geology 33(3):161–164Google Scholar
  372. Wilkinson MT, Humphreys GS (2005) Exploring pedogenesis via nuclide-based soil production rates and OSL-based bioturbation rates. Soil Res 43(6):767–779Google Scholar
  373. Wilkinson BH, McElroy BJ (2005) The impact of humans on continental erosion and sedimentation. GSA Bull 119(1–2):140–156Google Scholar
  374. Wilkinson BH, McElroy BJ, Kesler SE, Peters SE, Rothman ED (2009) Global geologic maps are tectonic speedometers – rates of rock cycling from area-age frequencies. GSA Bull 121:760–779Google Scholar
  375. Willett SD (1999) Orogeny and orography: the effects of erosion on the structure of mountain belts. J Geophys Res Solid Earth 104(B12):28957–28981Google Scholar
  376. Willett SD, Slingerland R, Hovius N (2001) Uplift, shortening, and steady-state topography in active mountain belts. Am J Sci 301(4–5):455–485Google Scholar
  377. Willett SD, Fisher D, Fuller C, En-Chao Y, Chia-Yu L (2003) Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology 31(11):945–948Google Scholar
  378. Willett SD, Hovius N, Brandon MT, Fisher DM (2006) Tectonics, climate, and landscape evolution, Penrose Conference Volume Special Paper 398, Boulder, CO, Geological Society of America 447Google Scholar
  379. Willgoose G (2005) Mathematical modeling of whole landscape evolution. Ann Rev Earth Planet Sci 33:443–459Google Scholar
  380. Wolf RA, Farley KA, Kass DM (1998) A sensitivity analysis of the apatite (U-Th)/He thermochronometer. Chem Geol 148:105–114Google Scholar
  381. Woodburne MO (2010) The great American biotic interchange: dispersals, tectonics, climate, sea level and holding pens. J Mamm Evol 17(4):245–264Google Scholar
  382. Wyllie PJ (1976) The way the earth works. Wiley, New YorkGoogle Scholar
  383. Yarce J, Monsalve G, Becker TW, Cardona A, Poveda E, Alvira D, Ordoñez-Carmona O (2014) Seismological observations in Northwestern South America: evidence for two subduction segments, contrasting crustal thicknesses and upper mantle flow. Tectonophysics 637:57–67Google Scholar
  384. Zaun PE, Wagner GA (1985) Fission-track stability in zircons under geological conditions. Nucl Tracks Radiat Meas 10:303–307Google Scholar
  385. Zeil, W. (1979) The Andes-a geological review. Gebruder Borntraeger, p 260Google Scholar
  386. Zeitler PK, Meltzer AS, Koons PO, Craw D, Hallet B, Chamberlain C, Kidd WSF, Park SK, Seeber L, Bishop M, Shroder J (2001) Erosion, Himalayan geodynamics, and the geomorphology of metamorphism. GSA Today:4–8Google Scholar
  387. Zuluaga MD, Houze RA (2015) Extreme convection of the near-equatorial Americas, Africa, and adjoining oceans as seen by TRMM. Monthly Weather Rev 143:298–316Google Scholar
  388. Zuluaga J, Mattsson L (1981) Glaciaciones de la Cordillera Occidental de Colombia, Páramo de Frontino. Departamento de Antioquia. Revista CIAF 6:639–654Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sergio A. Restrepo-Moreno
    • 1
    • 2
    Email author
  • David A. Foster
    • 3
  • Matthias Bernet
    • 4
  • Kyoungwon Min
    • 3
  • Santiago Noriega
    • 5
  1. 1.Facultad de Minas, Departamento de Geociencias y Medio AmbienteUniversidad Nacional de ColombiaMedellínColombia
  2. 2.Department of Geological SciencesUniversity of FloridaGainesvilleUSA
  3. 3.Department of Geological Sciences, University of FloridaGainesvilleUSA
  4. 4.ISTerre, Université Grenoble AlpsGrenobleFrance
  5. 5.Facultad de Minas, Departamento de Geociencias y Medio AmbienteUniversidad Nacional de ColombiaMedellínColombia

Personalised recommendations