Advertisement

Cretaceous Stratigraphy and Paleo-Facies Maps of Northwestern South America

  • Luis Fernando Sarmiento-Rojas
Chapter
Part of the Frontiers in Earth Sciences book series (FRONTIERS)

Abstract

This paper presents 13 stratigraphic cross sections and 12 paleo-facies maps, spanning the Cretaceous, and summarizes the Cretaceous geological history surrounding northwestern South America during this period. The work outlines a regional sequence stratigraphic framework for the Cretaceous, evolving within the context of the complex geological history and interaction of at least three tectonic plates. Cretaceous rocks, including local uppermost Jurassic and Paleocene deposits, form a mega-sequence bounded by regional unconformities that are locally angular. On a broad scale, Cretaceous rocks represent a major transgressive-regressive cycle with the maximum flooding surface close to the Cenomanian-Turonian boundary (MFS 8), corresponding to the maximum Cretaceous, and even Mesozoic, eustatic level. Superimposed on this large-scale trend are several smaller transgressive-regressive cycles, suggesting an oscillating relative tectono-eustatic level. These minor cycles correspond to the several proposed stratigraphic sequences.Cretaceous sedimentary history can be summarized in four episodes: (1) Berriasian to Early Aptian: Sedimentation was restricted to rapidly subsiding extensional basins where great thickness of sediment accumulated. Sedimentation started in continental environments followed by a marine transgression. Marine shelves developed with carbonate- dominated sedimentation in Venezuela and northeastern Colombia, and mud-dominated sedimentation in Colombia, while in Peru sands and muds were deposited in shallow marine to deltaic environments. During the Aptian, a tectonically induced unconformity resulted from the closure and accretion of the Quebradagrande oceanic margin basin to western Colombia and Ecuador, or alternatively from the change from active rifting to regional thermal subsidence. (2) Late Aptian to Cenomanian: Regional thermal subsidence resulted in an increase of in the area of marine sedimentation via the coalescence of isolated basins into a regional basin extending along the continental margin from Venezuela to Peru. Marine shelf sedimentation was mud- dominated in Venezuela and Colombia, and carbonate-dominated in Peru. (3) Cenomanian to Santonian: During the latest Cenomanian-Early Turonian, sea level reached its maximum. Sedimentation was controlled by eustatic changes. Coincident with maximum Cretaceous flooding, anoxic events favored accumulation of organic matter at the sea bottom resulting in the best petroleum source rocks in northern South America. From Venezuela to Ecuador, pelagic shale and pelagic fine-grained limestone sedimentation prevailed. During the Coniacian-Santonian in Venezuela and Colombia, marine upwelling favored development of siliceous plankton and chert deposition. In Peru, marine shelf sedimentation was mud-dominated. (4) Campanian to Early Paleocene: Marine regression and a general shallowing of sedimentary environments occurred throughout northwestern South America, coeval with the appearance of compressional deformation events, which started earlier in Peru. During the Late Campanian, initial collision of the Caribbean Plate with northern Colombia generated a tectonically induced unconformity extending into western Venezuela. During the Late Maastrichtian and Paleocene, regional marine regression resulted in continental sedimentation extending from Venezuela to Ecuador. In Venezuela, the prevailing passive margin changed to an active margin with obduction of oceanic terranes of Caribbean affinity during the Maastrichtian and Paleocene. In Colombia, Campanian and Maastrichtian collision of the Caribbean Plate resulted in accretion of oceanic fragments to the continental margin and generated uplift of the Central Cordillera and its northern prolongation in the Lower Magdalena Valley (Plato-San Jorge area) and the Sierra Nevada de Santa Marta. Uplift of the Cordillera Real in Ecuador and the sub-Andean zone including the western part of the Oriente basin also occurred. Campanian uplift ofthe Peruvian Andes provided a source of detrital sediments that accumulated as continental and alluvial fan deposits in active synclines. During the Paleocene, most of the basins began to compartmentalize due to active deformation.

Keywords

Northern Andes Cretaceous Regional stratigraphy Paleogeography Paleo-facies maps Sequence stratigraphy Sequence boundaries Maximum flooding surfaces 

References

  1. Alfonso M, Herrera JM, Navarrete RE, Bermúdez HD, Calderón JE, Parra FJ, Sarmiento G, Vega F, Perrilliat M de C (2009) Cartografía geológica, levantamiento de columnas estratigráficas, toma de muestras y análisis bioestratigráficos. Sector de Chalán (Cuenca Sinú–San Jacinto). ANH-ATG, BogotáGoogle Scholar
  2. Atherton MP, Pitcher WS, Warden V (1983) The Mesozoic marginal basin of central Peru. Nature 305:303–306CrossRefGoogle Scholar
  3. Baby P, Rivdeneira M, Barragan R (eds) (2004) La Cuenca Oriente: Geología y Petróleo. IFEA, IRD, PETROECUADOR, Quito, 296 pGoogle Scholar
  4. Ballesteros I, Nivia A (1985) La Formación Ritoque: Registro sedimentario de una albufera de comienzos del Cretácico. In: Etayo-Serna F, Laverde-Montaño F (eds) Proyecto Crétacico, contribuciones. Chapter XIV. Ingeominas Publicación Geológica Especial 16, Bogotá, 17 pGoogle Scholar
  5. Barragán R, Christophoul F, White H, Baby P, Rivadeneira M, Ramírez F, Rods J (2004) Estratigrafía secuencial del Cretácico en la Cuenca Oriente del Ecuador. In: Baby P, Rivadeneira M, Barragán R (eds) La Cuenca Oriente: Geología y Petróleo. IFEA, IRD, PETROECUADOR, Quito, pp 45–68CrossRefGoogle Scholar
  6. Barrero D (1979) Geology of the central western cordillera, west of Buga and Roldanillo, Colombia, vol 4. Publicaciones Geológicas Especiales del Ingeominas, Bogota, pp 1–75Google Scholar
  7. Barrero D, Laverde F (1998) Estudio Integral de evaluación geológica y potencial de hidrocarburos de la cuenca “intramontana” Cauca- Patía, ILEX- Ecopetrol report, Inf. N0. 4977Google Scholar
  8. Barrio CA, Coffield DQ (1992) Late cretaceous stratigraphy of the upper Magdalena Basin in the Payandé-chaparral segment (western Girardot Sub-Basin), Colombia. J S Am Earth Sci 5(2):132–139CrossRefGoogle Scholar
  9. Benavides C, Victor E (1956) Cretaceous system in northern Peru. Am Mus Nat Hist (New York) Bull 108(4):359–493Google Scholar
  10. Blau J, Moreno M, Senff M (1995) Plaxius Caucadensis n. Sp., a crustacean microcoprolite from the basal Nogales formation (Campanian to Maastrichtian of Colombia). Micropaleontology 41:85–88CrossRefGoogle Scholar
  11. Bourgois J, Azéma J, Tournon J, Bellon Calle B, Parra E, Toussaint JF, Glaçon G, Feinberg H, De Wever P, Origlia I (1982a) Ages et structures des complexes basiques et ultrabasiques de la facade Pacifique entre 3° N et 12° N (Colombie, Panamá et Costa-Rica). Bull Soc Géol France 7 t XXIV(3):545–554CrossRefGoogle Scholar
  12. Bourgois J, Calle B, Tournon J, Toussaint JF (1982b) The Andean ophiolitic megastructures on the Buga-Buenaventura transverse (western cordillera – Valle Colombia). Tectonophysics 82:207–229CrossRefGoogle Scholar
  13. Bürgl H (1960) El Jurásico e Infracretáceo del Río Batá, Boyacá: Servicio Geológico Nacional, Informe 1319, Boletín Geológico, Bogotá, 1–3: 169–211Google Scholar
  14. Bürgl H (1964) El Jura-Triásico de Colombia. Boletín Geológico Servicio Geológico Nacional, Bogotá, 12(1–3):5–31Google Scholar
  15. Bürgl H (1967) The orogenesis of the Andean system of Colombia. Tectonophysics 4(4–6):429–443CrossRefGoogle Scholar
  16. Bustamante A (2008) Geobarometria, geoquimica, geocronologia e evolução tectônica das rochas de fácies xisto azul nas áreas de Jambaló (Cauca) e Barragán (Valle del Cauca), Colômbia. PhD Thesis. Instituto de Geociências, Universidad de São Paulo, Brasil, 179Google Scholar
  17. Cáceres C, Etayo-Serna F (1969) Bosquejo geológico de la región del Tequendama, Opúsculo guía de la Excursión Pre-Congreso. 1er Congreso Colombiano de Geología, Opúsculo, Bogotá, 23 pGoogle Scholar
  18. Caputo MV (2009) Discussão sobre a Formação Alter do Chão e o Alto de Monte Alegre. In: Simpósio de Geologia da Amazônia, Boletim de Resumos, vol 11, ManausGoogle Scholar
  19. Caputo MV (2011a) Discussão sobre a Formação Alter do Chão e o Alto de Monte Alegre. In: Nascimento RSC, Horbe AMC, Almeida CM (eds) Contribuições à Geologia da Amazônia, Simpósio de Geologia da Amazônia, vol 7, pp 7–23Google Scholar
  20. Caputo MV (2011b) Reposicionamento estratigráfico da Formação Alter do Chão e evolução tectosedimentar da Bacia do Amazonas no Mesozoico e Cenozoico. In: XIV Congreso Latinoamericano de Geología, Medellin, Colombia, Memórias, pp 173–174Google Scholar
  21. Cardona A, Weber M, Wilson R, Cordani U, Muñoz CM, Paniagua F (2007) Evolución tectono-magmática de las rocas máficas-ultramáficas del Cabo de La Vela y el Stock de Parashi, Península de la Guajira: registro de la evolución orogénica Cretácica-Eocena del norte de Suramérica y el Caribe. XI Congreso Colombiano de Geologia, Bucaramanga, Agosto 14–17. 6 pGoogle Scholar
  22. Cardona A, Weber M, Valencia V, Bustamante C, Montes C, Cordani U, Muñoz CM (2014) Geochronology and geochemistry of the Parashi granitoid, NE Colombia: tectonic implication of short-lived early Eocene plutonism along the SE Caribbean margin. J South Am Earth Sci 50:75–92CrossRefGoogle Scholar
  23. Cardozo E, Ramírez C (1985) Ambientes de depósito de la Formación Rosablanca: Área de Villa de Leiva. In: Etayo-Serna F, Laverde-Montaño F (eds) Proyecto Crétacico, contribuciones. Chapter XIII. Ingeominas Publicación Geológica Especial 16, Bogotá, 13 pGoogle Scholar
  24. Cediel F (1968) El Grupo Girón, una molasa Mesozóica de la Cordillera Oriental. Servicio Geológico Nacional Boletín Geológico, Bogotá 16(1–3): 5–96Google Scholar
  25. Cediel F (2018) Phanerozoic orogens of Northwestern South America: cordilleran-type orogens, taphrogenic tectonics and orogenic float. Springer, Cham, pp. 3–89Google Scholar
  26. Cediel F, Etayo-Serna F, Cáceres C (2003a) Facies distribution and tectonic setting during the Proterozoic of Colombia (scale 1:2′000.000, map). Instituto Colombiano de Geología y Minería (Ingeominas), BogotáGoogle Scholar
  27. Cediel F, Shaw RP, Caceres C (2003b) Tectonic assembly of the northern Andean block. In: Bartolini C, Buffler RT, Blickwede J (eds) The Circum-Gulf of Mexico and the Caribbean: hydrocarbon habitats, basin formation, and plate tectonics, vol 79. American Association of Petroleum Geologists Memoir, pp 815–848Google Scholar
  28. Cediel F, Leal-Mejia H, Shaw RP, Melgarejo JC, Restrepo-Pace PA (2011) Geology and hydrocarbon potential regional geology of Colombia. In: Cediel F (ed) Petoleum geology of Colombia, vol 1. Univeristy EAFIT, Agencia Nacional de Hidrocarburos, Bogota, 224 pGoogle Scholar
  29. Clavijo J (1985) La secuencia de la Formación Los Santos en la Quebrada Piedra Azul: registro de una hoya fluvial evanescente. In: Etayo-Serna F, Laverde-Montaño F (eds) Proyecto Crétacico, contribuciones. Chapter IV. Ingeominas Publicación Geológica Especial 16, Bogotá, 18 pGoogle Scholar
  30. Cobbing EJ, Pitcher WS, Wilson JJ, Baldock JW, Taylor WP, McCourt W, Snelling NJ (1981) The geology of the western cordillera of northern Peru. Institute of Geological Sciences, London. Overseas Memoir, 5, 143 pGoogle Scholar
  31. Cooney PM, Lorente MA (2009) A structuring event of Campanian age in western Venezuela, interpreted from seismic and palaeontological data, vol 328. Geological Society, London., Special Publications, pp 687–703.  https://doi.org/10.1144/SP328.27 CrossRefGoogle Scholar
  32. Cooper MA, Addison FT, Alvarez R, Coral M, Graham RH, Hayward AB, Howe S, Martinez J, Naar J, Peñas R, Pulham AJ, Taborda A (1995) Basin development and tectonic history of the Llanos Basin, eastern cordillera, and middle Magdalena Valley, Colombia. AAPG Bull 79(10):1421–1443Google Scholar
  33. Daemon RF (1975) Contribuição à datação da Formação Alter do Chão, bacia do Amazonas. Rev Bras Geo 5:58–84Google Scholar
  34. Dalmayrac C, Laubacher G, Marocco R (1980) Geologie des Andes Peruvienses. Travaux et Documents de l’ORSTOM (Paris) 122, 501 pGoogle Scholar
  35. Del Solar C (1982) Ocurrencia de hidrocarburos en la Formación Vivian, nororiente Peruano. In: I Simposio Exploracion Petrolera en las Cuencas Subandinas, vol 1. Association Columbiana de Geologist y Geofísicos del Petroleum, BogotáGoogle Scholar
  36. Diaz L (1994a) Distribution de las facies siliciclastic correspondents a la Formation Arenisca Tierna y equivalents end el Valle Superior del Magdalena. In: Etayo Serna F (ed) Studios geological del Valle Superior del Magdalena. Chapter IV. Univ. Nacional de Colombia, Ecopetrol, Bogotá, 15 pGoogle Scholar
  37. Diaz L (1994b) Reconstruction de la Cuenca del Valle Superior del Magdalena, a finale del Creation. In: Etayo Serna F (ed) Studios geological del Valle Superior del Magdalena. Chapter XI. Univ. Nacional de Colombia, Ecopetrol, Bogotá, 13 pGoogle Scholar
  38. Dino R, Silva OB, Abrahao D (1999) Paleontological and stratigraphic characterization of the cretaceous strata from the Alter do Choo formation, Amazonas basin. In: UNESP, Simpsio sobre o Cretaceo do Brasil and Simpósio sobre el Cretácico de América del Sur, vol 5., Anais, pp 557–565Google Scholar
  39. Dorado J (1984) Contribución al conocimiento de la estratigrafía de la Formación Brechas de Buenavista (límite Jurásico – Cretácico), región noroeste de Villavicencio (Meta). Geología Colombiana, Bogotá, 17: 7–40Google Scholar
  40. Duque-Trujillo J, Sánchez J, Orozco-Esquivel T, Cárdenas A (2018) Cenozoic magmatism of the maracaibo block and its tectonic significance. In: Cediel F, Shaw RP (eds) Geology and tectonics of Northwestern South America: the Pacific-Caribbean-Andean junction. Springer, Cham, pp 551–594Google Scholar
  41. Ecopetrol, Esso and Exxon Exploration Company (1994) Integrated technical evaluation Santander sector Colombia., 1991–1994. Report, text and figures. Final Report, Houston, 38 p., 49 figsGoogle Scholar
  42. Erikson JP, Pindell JL (1993) Analysis of subduction in northeastern Venezuela as a discriminator of tectonic models of northern South America. Geology 21:945–948CrossRefGoogle Scholar
  43. Etayo F, Renzoni G, Barrero D (1976) Contornos sucesivos del mar Cretácico en Colombia. Primer Congreso Colombiano de Geología, Mem., Bogotá, pp 217–252Google Scholar
  44. Etayo-Serna F (1968) El sistema Cretáceo en la región de Villa de Leiva y zonas próximas. Geología Colombiana, Bogotá, 5:5–74Google Scholar
  45. Etayo-Serna F (1994) Epílogo: A modo de historia geológica del Cretácico del Valle Superior del Magdalena. In: Etayo Serna F (ed) Estudios geológicos del Valle Superior del Magdalena. Chapter XX. Univ. Nacional de Colombia, Ecopetrol, Bogotá, 6 pGoogle Scholar
  46. Etayo-Serna F, Florez JM (1994) Estratigrafía y estructura de la Quebrada Calambe y el cerro El Azucar, Olaya Herrera Tolima. In: Etayo Serna F (ed) Estudios geológicos del Valle Superior del Magdalena. Chapter XII. Univ. Nacional de Colombia, Ecopetrol, Bogotá, 23 pGoogle Scholar
  47. Etayo-Serna F, Rodríguez G (1985) Edad de la Formación Los Santos. In: Etayo-Serna F, Laverde-Montaño F (eds) Proyecto Crétacico, contribuciones. Chapter XXVI. Ingeominas Publicación Geológica Especial 16, Bogotá, 13 pGoogle Scholar
  48. Etayo-Serna F, Barrero D, Lozano H, Espinosa A, González H, Orrego A, Zambrano F, Duque H, Vargas R, Núñez A, Álvarez J, Ropaín C, Ballesteros I, Cardozo E, Forero H, Galvis N, Ramírez C, Sarmiento L (1983) Mapa de terrenos geológicos de Colombia. Ingeominas Publicación Geológica Especial 14, Bogotá, 235 pGoogle Scholar
  49. Fabre A (1985) Dinámica de la sedimentación Cretácica en la región de la Sierra Nevada del Cocuy (Cordillera Oriental de Colombia). In: Etayo-Serna F, Laverde-Montaño F (eds) Proyecto Crétacico, contribuciones. Chapter XIX. Ingeominas Publicación Geológica Especial 16, Bogotá, 20 pGoogle Scholar
  50. Fabre A (1986) Géologie de la Sierra Nevada del Cocuy (Cordillère Orientale de Colombie). Thèse Université de Genève de Docteur es Sciences de la Terre, No 2217, Genève, 394 pGoogle Scholar
  51. Fabre A (1987) Tectonique et géneration d’hydrocarbures: Un modèle de l’évolution de la Cordillère Orientale de Colombie et du Bassin des Llanos pendant le Crétacé et le Tertiaire. Arch Sc Genève 40(Fasc. 2):145–190Google Scholar
  52. Fajardo A, Rubiano JL, Reyes A (1993) Estratigrafía de secuencias de las rocas del Cretáceo Tardío al Eoceno Tardío en el sector central de la cuenca de los Llanos Orientales, Departamento del Casanare, Report ECP-ICP-001-93, Piedecuesta, Santander, 69 pGoogle Scholar
  53. Flórez JM, Carrillo GA (1994) Estratigrafía de la sucesión litológica basal del Cretácico del Valle Superior del Magdalena. In: Etayo Serna F (ed) Estudios geológicos del Valle Superior del Magdalena. Chapter II. Univ. Nacional de Colombia, Ecopetrol, Bogotá, 26 pGoogle Scholar
  54. Föllmi KB, Garrison RE, Ramirez PC, Zabrano-Ortíz, Kennedy WJ, Lehner BL (1992) Cyclic phosphate-rich successions in the upper cretaceous of Colombia. Palaeogeogr Palaeoclimatol Palaeoecol 93:151–182CrossRefGoogle Scholar
  55. Forero H, Sarmiento L (1985) La facies evaporítica de la Formación Paja en la region de Villa de Leiva. In: Etayo-Serna F (ed) Proyecto Cretacico Contribuciones. Ingeominas, Bogota., Publicacion Especial XVII, pp 1–16Google Scholar
  56. Franzinelli E, Igreja H (2011) Ponta das Lajes e o Encontro das Águas, AM - A Formação Alter do Chão como moldura geológica do espetacular Encontro das Águas Manauara. In: Winge M, Schobbenhaus C, Souza CRG, Fernandes ACS, Berbert-Born M, Sallun filho W, Queiroz ET (eds) Sítios Geológicos e Paleontológicos do Brasil. Publicado na Internet em 29/11/2011 no endereço http://sigep.cprm.gov.br/sitio054/sitio054.pdf Google Scholar
  57. Galvis N, Rubiano J (1985) Redefinición estratigráfica de la Formación Arcabuco, con base en análisis facial. In: Etayo-Serna F, Laverde-Montaño F (eds) Proyecto Crétacico, contribuciones. Chapter VII. Ingeominas Publicación Geológica Especial 16, Bogotá, 16 pGoogle Scholar
  58. Geotec (1992) Facies distribution and tectonic setting through the Phanerozoic of Colombia. A regional synthesis combining outcrop and subsurface data presented in 17 consecutive rock-time slicesGoogle Scholar
  59. Ghosh SK (1984) Late Cretaceous condensed sequence, Venezuelan Andes. In: Bonini W E, Hargraves R B, Shagam R (Eds.), The Caribbean–South American Plate boundary and regional tectonics. Geol. Soc. Am. Mem. 162: 317–324Google Scholar
  60. Gómez E, Pedraza P (1994) El Maastrichtiano de la región Honda Guaduas, límite N del Valle Superior del Magdalena: Registro sedimentario de un delta dominado por ríos trenzados. In: Etayo Serna F (ed) Estudios geológicos del Valle Superior del Magdalena. Chapter III. Univ. Nacional de Colombia, Ecopetrol, Bogotá, 20 pGoogle Scholar
  61. González de Juana C, Iturralde J, Picard X (1980) Geología de Venezuela y de sus Cuencas Petrolíferas: Caracas, Ediciones Foninves, Tomos I y II, 1031 pGoogle Scholar
  62. Guerrero J (2002) A Proposal on the Classification of Systems Tracts: Application to the Allostratigraphy and Sequence Stratigraphy of the Cretaceous Colombian Basin. Part 2: Barremian to Maastrichtian. Geologia Colombiana 27, pp 27–49, 2 Figs, 1 TableGoogle Scholar
  63. Guerrero J, Sarmiento G, Navarrete R (2000) The Stratigraphy of the W Side of the Cretaceous Colombian Basin in the Upper Magdalena Valley. Reevaluation of selected areas and type localities ioncluding Aipe, Guaduas, Ortega and Piedras. Geoogia Colombiana 25, pp 45–110, 12 PI., 5 Figs., 6 Tabl., 1 Microp. App.: 6 PI. Bogotá.100 pGoogle Scholar
  64. Guzmán G, Clavijo J, Barrera R (1994) Geología Bloque Santero, Secciones estratigráficas. Informe inédito. INGEOMINAS, BogotáGoogle Scholar
  65. Guzmán G, Gómez E, Serrano B (2004) Geología de los Cinturones del Sinú, San Jacinto y Borde Occidental del Valle Inferior del Magdalena, Caribe Colombiano. Escala 1:300.000. Ingeominas. Bogotá, 134pGoogle Scholar
  66. Huerta-Kohler T (1982) Exploración petrolíera en la Cuenca Ucayali, Oriente Peruano. In: II Simposio Exploración Petrolera en las Cuencas Subandinas, V. 1. Asociación Colombiana de Geólogos y Geofísicos del Petróleo, BogotáGoogle Scholar
  67. IHS (2008a) Amazonas Basin. Basin Monitor. IHS, 50 pGoogle Scholar
  68. IHS (2008b) Solimoes Basin. Basin Monitor. IHS, 50 pGoogle Scholar
  69. Intera Information Technologies-Bioss (1995) Evaluación geológica regional de la cuenca Cesar-Ranchería. Bogotá: Empresa Colombiana de Petróleos. ECOPETROLGoogle Scholar
  70. Jaillard E (1993) Kimmeridgian to Paleocene tectonic and geodynamic evolution of the Peruvian (and Ecuadorian) margin. In: Salfity JA (ed) Cretaceous tectonics of the Andes. Reprint. Fonds Documentaire ORSTOM. Vieweg, pp 101–167Google Scholar
  71. Jaillard E, Sempere T (1989) Cretaceous sequence stratigraphy of Peru and Bolivia. Fonds Documentaire ORSTOM, 010019766, 20 p. 1. Paleontological AppendixGoogle Scholar
  72. Jaillard EP, Solar P, Carlier G, Mourier T (1990) Geodynamic evolution of the northern and central Andes during early to middle Mesozoic times: a Tethyan model. J Geol Soc Lond 147:1009–1022CrossRefGoogle Scholar
  73. Jaillard É, Ordoñez M, Benitez S, Berrones G, Jiménez N, Montenegro G, Zambrano I (1995) Basin development in an accretionary, oceanic-floored fore-arc setting: southern coastal Ecuador during late cretaceous–late Eocene time. In: Tankard AJ, Suárez S R, Welsink HJ (eds) Petroleum basins of South America, vol 62. AAPG Memoir, pp 615–631Google Scholar
  74. Jaillard É, Hérail G, Monfret T, Díaz-Martínez E, Baby P, Lavenu A, Dumont J-F (2000) Tectonic evolution of the Andes of Ecuador, Peru, Bolivia and northernmost Chile. In: Cordani UG, Milani EJ, Thomaz-Filho A, Campos DA (eds) Tectonic evolution of South America. Publication of the 31st international geological congress, Rio de Janeiro, pp 481–559Google Scholar
  75. Jaillard E, Bengtson P, Dhondt A (2005) Late cretaceous marine transgressions in Ecuador and northern Peru: a refined stratigraphic framework. J S Am Earth Sci 19:307–323CrossRefGoogle Scholar
  76. Jaimes E, De Freitas M (2006) An Albian–Cenomanian unconformity in the northern Andes: evidence and tectonic significance. J S Am Earth Sci.  https://doi.org/10.1016/j.jsames.2006.07.011
  77. Jaramillo C, Yépez O (1994) Palinostratigrafía del Grupo Olini (Coniaciano-Campaniano), Valle Superior del Magdalena, Colombia. In: Etayo Serna F (ed) Estudios geológicos del Valle Superior del Magdalena. Chapter XIII, Univ. Nacional de Colombia, Ecopetrol, Bogotá, 20 pGoogle Scholar
  78. Juliao T, Carvalho M, Torres D, Plata A, Parra C (2011) Definición de paleoambientes de la Formación Cansona a partir de palinofacies, cuenca Sinú – San Jacinto. Resumen 14 Congreso Latinoamericano de Geología, Medellín, ColombiaGoogle Scholar
  79. Kerr AC, Tarney J (2005) Tectonic evolution of the Caribbean and northwestern South America: the case for accretion of two late cretaceous oceanic plateaus. Geology 33:269–272CrossRefGoogle Scholar
  80. Kerr AC, Marriner GF, Tarney J, Nivia A, Saunders AD, Thirlwall MF, Sinton CW (1997a) Cretaceous basaltic terranes in western Colombia: elemental, chronological and Sr-Nd isotopic constraints on petrogenesis. J Petrol 38:677–702CrossRefGoogle Scholar
  81. Kerr AC, Tarney J, Marriner GF, Nivia A, Saunders AD (1997b) The Caribbean–Colombian cretaceous Igneous Province: the internal anatomy of an oceanic plateau. In: Mahoney JJ, Coffin MF (eds) Large igneous provinces: continental, oceanic, and planetary flood volcanism, vol 100. American Geophysical Union, Geophysical monograph, pp 123–144Google Scholar
  82. Kerr AC, Tarney J, Nivia A, Marriner GF, Saunders AD (1998) The internal structure of oceanic plateaus: inferences from obducted cretaceous blocks in western Colombia and the Caribbean. Tectonophysics 292:173–188CrossRefGoogle Scholar
  83. Kerr AC, Iturralde-Vinent MA, Saunders AD, Babbs TL, Tarney J (1999) A new plate tectonic model of the Caribbean: implications from a geochemical reconnaissance of Cuban Mesozoic volcanic rocks. Geol Soc Am Bull 111:1581–1599CrossRefGoogle Scholar
  84. Kerr AC, Aspden JA, Tarney J, Pilatasig LF (2002a) The nature and provenance of accreted oceanic blocks in western Ecuador: geochemical and tectonic constraints. J Geol Soc 159:577–594CrossRefGoogle Scholar
  85. Kerr AC, Tarney J, Kempton PD, Spadea P, Nivia A, Marriner GF, Duncan RA (2002b) Pervasive mantle plume head heterogeneity: evidence from the late cretaceous Caribbean-Colombian oceanic plateau. J Geophys Res 107(7).  https://doi.org/10.1029/2001JB000790
  86. Kerr AC, White RV, Thompson PM, Tarney J, Saunders AD (2003) No oceanic plateau- no Caribbean plate? The seminal role of an oceanic plateau in Caribbean plate evolution. In: Bartolini C, Bufer RT, Blickwede J (eds) The Circum-Gulf of Mexico and the Caribbean: hydrocarbon habitats, basin formation, and plate tectonics, vol 79. AAPG Memoir, pp 126–168Google Scholar
  87. Kerr AC, Tarney J, Kempton PD, Pringle M, Nivia A (2004) Mafic pegmatites intruding oceanic plateau gabbros and ultramafic cumulates from bolivar, Colombia: evidence for a ‘wet’ mantle plume? J Petrol 45:1877–1906CrossRefGoogle Scholar
  88. Knechtel MM, Richards E, Rathbun MV (1947) Mesozoic fossils of Peruvian Andes. Johns Hpokins University (Baltimore), Studies in Geology, 15, 150 pGoogle Scholar
  89. Kohl E, Blissenchach E (1962) Las capas rojas del Cretáceo Superior-Terciario en la region del curso medio del Rio Ucayali, Oriente del Perú. Boletin de la Sociedad Geológica del Perú 39:1–37Google Scholar
  90. Kummel B Jr (1984) Geological reconnaissance of the Contamana region, Peru. Bull Geol Soc Am 59:1217–1266CrossRefGoogle Scholar
  91. Laverde F, Clavijo J (1985) Análisis facial de la Formación Los Santos, según el corte Yo y Tu (Zapatoca). In: Etayo-Serna F, Laverde-Montaño F (eds) Proyecto Crétacico, contribuciones. Chapter VI. Ingeominas Publicación Geológica Especial 16, Bogotá, 9 pGoogle Scholar
  92. Leal-Mejia H, Shaw RP, Melgarejo JC (2018) Spatial-Temporal Migration of Granitoid Magmatisn and the Phanerozoic Tectono-Magmatic Evolution of the Colombian Andes. In: Cediel F and Shaw RP (eds). Geology and Tectonics of Northwestern South America: The Pacific-Caribbean-Andean Junction, Springer, Cham, pp 253–397Google Scholar
  93. Litherland M, Aspden JA, Jemielita RA (1994) The metamorphic belts of Ecuador. Overseas Geology and Mineral Resources, 11, 147 pp. 2 map enclosures at 1:500,000 scale. British Geological Survey, NottinghamGoogle Scholar
  94. Lopez-Ramos E (2005) Chronostratigraphic correlation chart of Colombia. Ingeominas, Bogota, 56 pGoogle Scholar
  95. Lugo J, Mann P (1995) Jurassic – Eocene tectonic evolution of Maracaibo Basin, Venezuela. In: Tankard A, Suarez S, Welsink H (eds) Petroleum basins of South America, vol 62. AAPG Memoir, pp 699–725Google Scholar
  96. Luzieux L (2007) Origin and Late Cretaceous-Tertiary evolution of the Ecuadorian forearc. PhD Thesis, ETH, ZurichGoogle Scholar
  97. Luzieux LDA, Heller F, Spikings R, Vallejo CF, Winkler W (2006) Origin and cretaceous tectonic history of the coastal Ecuadorian forearc between 1°N and 3°S: paleomagnetic, radiometric and fossil evidence. Earth Planet Sci Lett 249:400–414CrossRefGoogle Scholar
  98. Macellari CE (1988) Cretaceous paleogeography and depositional cycles of western South America. Jour. South American earth. Sciences 1(4):376–418Google Scholar
  99. Mann P, Escalona A, Castillo MV (2006) Regional geologic and tectonic setting of the Maracaibo supergiant basin, western Venezuela. AAPG Bull 90(4):445–477CrossRefGoogle Scholar
  100. Martínez JI (1989) Foraminiferal biostratigraphy and paleoenvironments of the Maastrichtian colon mudstones of northern South America. Micropaleontology 35(2):97–113CrossRefGoogle Scholar
  101. Maze WB (1984) Jurassic la Quinta formation in the sierra de Perijá, northwestern Venezuela: geology and tectonic environment of red beds and volcanic rocks. In: Bonini WE, Hargraves RB, Shagam R (eds) The Caribbean-south American plate boundary and regional tectonics. Geol Soc am mem, vol 162, pp 263–282CrossRefGoogle Scholar
  102. McCourt WJ, Feininger T, Brook M (1984) New geological and geochronological data from the Colombian Andes: continental growth by multiple accretion. J Geol Soc Lond 141:831–845CrossRefGoogle Scholar
  103. McLaughlin DH Jr (1972) Evaporite deposits of Bogotá area, cordillera oriental, Colombia. AAPG Bull 56(11):2240–2259Google Scholar
  104. Mendes AC, Truckenbrod W, Rodriguez Nogueira AC (2012) Análise faciológica da Formação Alter do Chão (Cretáceo, Bacia do Amazonas), próximo à cidade de Óbidos, Pará, Brasil. Revista Brasileira de Geociências 42(1):39–57CrossRefGoogle Scholar
  105. Mendoza H (1985) La Formación Cumbre, modelo de transgresión marina rítmica, de comienzos del Cretácico, Proyecto Crétacico, contribuciones. Chapter IX. In: Etayo-Serna F, Laverde-Montaño F (eds) Ingeominas Publicación Geológica Especial 16, Bogotá, 17 pGoogle Scholar
  106. Meschede M, Frisch W (1998) A plate tectonic model the Mesozoic and early Cenozoic history of the Caribbean plate. Tectonophysics 296(3–4):269–291CrossRefGoogle Scholar
  107. Mojica J, Kammer A, Ujueta G (1996) El Jurásico del sector noroccidental de Suramerica y guía de la excursión al Valle Superior del Magdalena (Nov. 1–4/95), Regiones de Payandé y Prado, Departamento del Tolima, Colombia. Geología Colombiana, BogotáGoogle Scholar
  108. Morales LG, the Colombian Petroleum Industry (1956) General geology and oil occurrences of the middle Magdalena Valley, Colombia. In: Weeks LG (ed) Habitat of the middle and upper Magdalena basins, Colombia. Oil - a symposium. A.A.P.G, pp 641–695Google Scholar
  109. Moreno JM (1990a) Stratigraphy of the lower cretaceous Rosablanca formation, west flank, eastern cordillera, Colombia, vol 17. Geología Colombiana, Bogotá, pp 65–86Google Scholar
  110. Moreno JM (1990b) Stratigraphy of the Lower Cretaceous units central part Eastern Cordillera, Colombia, 13th International Sedimentological Congress, Nothingham, Aug 22–31, 1990. AbstractGoogle Scholar
  111. Moreno JM (1991) Provenance of the lower cretaceous sedimentary sequences, central part, eastern cordillera, Colombia. Revista Academia Colombiana Ciencias Exactas Físicas y Naturales 18(69):159–173Google Scholar
  112. Mourier T, Megard F, Pardo A, Reyes L (1988) L’evolution Mesozoique des Andes de Huancabamba et l’hypothèse de l’accretion du microcontinent Amotape-Tahuin. Bulletin de la Société Géologique de France 8(4):69–79Google Scholar
  113. Nerlich R, Clark SR, Bunge HP (2014) Reconstructing the link between the Galapagos hotspot and the Caribbean plateau. Geo Res J 1-2:1–7Google Scholar
  114. Nivia A (2001) Mapa Geológico del Departamento del Valle del Cauca. Memoria Explicativa. Ingeominas, Bogota, 148 pGoogle Scholar
  115. Nivia A, Marriner G, Kerr A (1996) El Complejo Quebradagrande, una posible Cuenca marginal intracratónica del Cretaceo Inferior en la Cordillera Central de los Andes colombianos: VII Cong. Col Geol Mem 3:108–123Google Scholar
  116. Nivia A, Marriner GF, Kerr AC, Tarney J (2006) The Quebradagrande complex: a lower cretaceous ensialic marginal basin in the central cordillera of the Colombian Andes. J S Am Earth Sci 21:423–436CrossRefGoogle Scholar
  117. Pardo A, Moreno M, Gómez A (1993) La Formación Nogales: una unidad sedimentaria fosilifera del Campaniano-Maastrictiano, aflorante en el flanco occidental de la Cordillera Central colombiana: VI Congreso Colombiano de Geología, memorias tomo I, p 248–261Google Scholar
  118. Parnaud Y, Gou Y, Pascual J, Truskowski I, Gallango O, Passalacqua H (1995) Petroleum geology of the central part of the eastern Venezuela Basin. In: Tankard A, Suarez S, Welsink H (eds) Petroleum basins of South America, vol 62. AAPG Memoir, pp 741–756Google Scholar
  119. Pimpirev CT, Patarroyo P, Sarmiento G (1992) Stratigraphy and facies analysis of the Caqueza group, a sequence of lower cretaceous turbidites in the cordillera oriental of the Colombian Andes, vol 17. Geología Colombiana, Bogotá, pp 297–308Google Scholar
  120. Pindell JL (1990) Geological arguments suggesting a Pacific origin for the Caribbean plate. In: Larue DK, Draper G (eds) Transactions of the 12th Caribbean geological conference. Miami Geological Society, St. Croix, pp 1–4Google Scholar
  121. Pindell JL (1993) Regional synopsis of Gulf of Mexico and Caribbean evolution. In: Pindell JL, Perkins RF (eds) Mesozoic and early Cenozoic development of the Gulf of Mexico and Caribbean region — a context for hydrocarbon exploration. Foundation thirteenth annual research conference. Gulf Coast section SEPM, pp 251–274Google Scholar
  122. Pindell JL, Barret SF (1990) Geological evolution of the Caribbean region: a plate tectonic perspective. In: Dengo G, Case J (eds) The Caribbean region, vol. H, the geology of North America. Geol. Soc. am, Boulder, pp 405–432Google Scholar
  123. Pindell J, Dewey J (1982) Permo-Triassic reconstruction of western Pangaea and the evolution of the Gulf of Mexico-Caribbean region. Tectonics 1:179–211CrossRefGoogle Scholar
  124. Pindell J, Erikson J (1993) The Mesozoic margin of northern South America. In: Salfity J (ed) Cretaceous tectonics of the Andes, Vieweg, pp 1–60Google Scholar
  125. Pindell J, Kennan L (2009) Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. In: James K, Lorente MA, Pindell J (eds) The geology and evolution of the region between north and South America, vol 328. Geological Society of London, Special Publication, pp 1–60Google Scholar
  126. Pindell JL, Tabbutt KD (1995) Mesozoic-Cenozoic Andean paleogeography and regional controls on hydrocarbon systems. In: Tankard AJ, Suárez S R, Welsink HJ (eds) Petroleum basins of South America, vol 62. AAPG Memoir, pp 101–128Google Scholar
  127. Pindell J, Kennan L, Maresch W, Stanek K, Draper G, Higgs R (2005) Plate kinematics and crustal dynamics of circum-Caribbean arc-continent interactions; tectonic controls on basin development in proto-Caribbean margins. In: Ave-Lallemant-Hans-G, Sisson-Virginia-B (eds) Caribbean-south American plate interactions, Venezuela, vol 394. Special Paper Geological Society of America, pp 7–52Google Scholar
  128. Polanía JH, Rodríguez OG (1978) Posibles turbiditas del Cretáceo Inferior (Miembro Socotá) en el área de Anapoima (Cundinamarca); una investigación sedimentológica basada en registros gráficos, vol 10. Geología Colombiana, Bogotá, pp 87–91Google Scholar
  129. Posamentier HW, Allen GP, James DP, Tesson M (1992) Forced regressions in a sequence stratigraphic framework: concepts, examples, and exploration significance. AAPG Bull 76:1687–1709Google Scholar
  130. Pratt WT, Duque P, Ponce M (2005) An autochthonous geological model for the eastern Andes of Ecuador. Terctonophysics 399:251–278CrossRefGoogle Scholar
  131. Price LI (1960) Dentes de Theropoda num testemunho de sonda no estado do Amazonas. Anais da Acad Bras Ciên 32:79–84Google Scholar
  132. Ramírez N, Ramírez H (1994) Estratigrafía y origen de los carbonatos del Cretácico Superior en el Valle Superior del Magdalena, Departamento del Huila, Colombia. In: Etayo Serna F (ed) Estudios geológicos del Valle Superior del Magdalena. Chapter V. Univ. Nacional de Colombia, Ecopetrol, Bogotá, 15 pGoogle Scholar
  133. Renzoni G (1985a) Paleoambientes de la Formación Tambor en la Quebrada Pujamanes. In: Etayo-Serna F, Laverde-Montano F (eds) Proyecto Crétacico, contribuciones. Chapter III. Ingeominas Publicación Geológica Especial 16, Bogotá, 18 pGoogle Scholar
  134. Renzoni G (1985b) La secuencia facial de la Formación Los Santos por la Quebrada Piedra Azul: Registro de una hoya fluvial evanescente. In: Etayo-Serna F, Laverde-Montaño F (eds) Proyecto Cretácico, contribuciones. Chapter IV. Ingeominas Publicación Geológica Especial 16, Bogotá, 18 pGoogle Scholar
  135. Renzoni G (1985c) Paleoambientes de la Formación Arcabuco y Cumbre de la Cordillera de Los Cobardes. In: Etayo-Serna F, Laverde-Montaño F (eds) Proyecto Crétacico, contribuciones. Chapter X. Ingeominas Publicación Geológica Especial 16, Bogotá, 14 pGoogle Scholar
  136. Rivera R (1979) Zonas faunísticas del Cretáceo de Lima. Boletin de la Sociedad Geológica del Peru, 62–19-24Google Scholar
  137. Rod E, Maync W (1954) Revision of lower cretaceous stratigraphy of Venezuela. AAPG Bull 38:193–283Google Scholar
  138. Rolón LF, Carrero MM (1995) Análisis estratigráfico de la sección Cretácica aflorante al oriente del anticlinal de Los Cobardes entre los Municipios de Guadalupe-Chima-Contratación, Departamento de Santander. Tesis pregrado Geología, Univ. Nacional de Colombia, Bogotá, 80Google Scholar
  139. Ross MI, Scotese CR (1988) A hierarchical tectonic model of the Gulf of Mexico and Caribbean region. Tectonophysics 155:139–168CrossRefGoogle Scholar
  140. Rubiano JL (1989) Petrography and stratigraphy of the Villeta Group, Cordillera Oriental, Colombia, South America. M.Sc. Thesis, Univ. South Carolina, Columbia, SC., 96 pGoogle Scholar
  141. Sarmiento LF (1989) Stratigraphy of the Cordillera Oriental west of Bogotá, Colombia. M.Sc. Thesis University of South Carolina, Columbia, SC.,102 pGoogle Scholar
  142. Sarmiento LF (2011) Middle Magdalena Basin. Geology and hydrocarbon potential. In: Cediel F (ed) Petroleum geology of Colombia, vol 11. Universidad Eafit for ANH, Medellín, p 192Google Scholar
  143. Sarmiento LF (2015) Correlacion estratigrafica pozos con datos de geoquimica de roca del Valle Medio del Magdalena, parte norte del Valle Superior del Magdalena y parte Suroccidental de la Cordillera Oriental. Presentacion para Equipo de Hidrocarburos no convencionales Ecopetrol, Bogota, 110 pGoogle Scholar
  144. Sarmiento-Rojas LF (2001) Mesozoic rifting and Cenozoic basin inversion history of the Eastern Cordillera, Colombian Andes. Inferences from tectonic models. Ph.D. Thesis, Vrije Universiteit, Amsterdam, 297 pGoogle Scholar
  145. Scherrenberg AF, Jacay J, Holcombe RJ, Rosenbaum G (2012) Stratigraphic variations across the Marañon fold-thrust belt, Peru: implications for the basin architecture of the west Peruvian trough. Jour. South American earth. Sciences 30:147–158Google Scholar
  146. Sinton CW (1997) The internal structure of oceanic plateaus: inferences from obducted cretaceous terranes in western Colombia and the Caribbean. Tectonophysics 292:173–188Google Scholar
  147. Sinton CW, Duncan RA, Storey M, Lewis J, Estrada JJ (1998) An oceanic flood basalt province within the Caribbean plate. Earth Planet Sci Lett 155:221–235CrossRefGoogle Scholar
  148. Soto FV (1979) Facies y ambientes deposicionales cretácicos, area central sur de la Cuenca Marañón. Boletin de la Sociedad Geológica del Perú 60:233–250Google Scholar
  149. Spikings RA, Winkler W, Seward D, Handler R (2001) Along- strike variations in the thermal and tectonic response of the continental Ecuadorian Andes to the collision with heterogeneous oceanic crust. Earth Planet Sci Lett 186:57–73CrossRefGoogle Scholar
  150. Toussaint JF (1995a) Hipótesis sobre el marco geodinámico de Colombia durante el Mesozóico temprano, Contribution to IGCP 322 Jurassic events in South America, vol 20. Geología Colombiana, Bogotá, pp 150–155Google Scholar
  151. Toussaint JF (1995b) Evolución geológica de Colombia 2. Triásico Jurásico. Contribución al IGCP 322 “Correlation of Jurassic events in South America” International Geological Correlation Programme Unesco IUGS. Univ. Nacional de Colombia. Medellín, 94 pGoogle Scholar
  152. Toussaint JF, Restrepo JJ (1989) Acresiones sucesivas en Colombia; un nuevo modelo de evolución geológica. V Congreso Colombiano de Geología, Bucaramanga, I: 127–146Google Scholar
  153. Toussaint JF, Restrepo JJ (1994) The Colombian Andes during cretaceous times. In: Salfity JA (ed) Cretaceous tectonics of the Andes, Verlag Braunschweig, Wiesbaden, pp 61–100Google Scholar
  154. Tschopp HJ (1948) Geologische Skizze von Ekuador. Bulletin de l’Association Suisse de Géologie Ingénieur et Pétrologie 15:14–45Google Scholar
  155. Ulloa C, Rodríguez E (1976) Geología del cuadrángulo K-12, Guateque. Boletín Geológico, Ingeominas, Bogotá, 22(1): 4–55Google Scholar
  156. Vallejo CV (2007) Evolution of the Wester Cordillera in the Andes of Ecuador (Late Cretaceous-Paleocene). Ph.D. Dissertation, Swiss Federal Institute of Technology Zürich. 158 p. 4 Appendixes 159–208Google Scholar
  157. Vallejo C, Winkler W, Spikings RA, Luzieux L, Heller F, Bussy F (2009) Mode and timing of terrane accretion in the forearc of the Andes in Ecuador, vol 204. Geological Society of America Memoir, pp 197–216Google Scholar
  158. Vargas R, Etayo RG, Téllez N (1985) Corte estratigráfico panorámico de la Formación Los Santos, Carretera Quebrada El Medio El Boquerón Santander. In: Etayo-Serna F, Laverde-Montaño F (eds) Proyecto Crétacico, contribuciones. Chapter V. Ingeominas Publicación Geológica Especial 16, Bogotá, 12 pGoogle Scholar
  159. Vergara L, Prössl KF (1994) Dating the Yaví formation (Aptian upper Magdalena Valley, Colombia). In: Etayo Serna F (ed) Estudios geológicos del Valle Superior del Magdalena. Chapter XVIII. Univ. Nacional de Colombia, Ecopetrol, Bogotá, 14 pGoogle Scholar
  160. Villagomez DR (2010) Thermochronology, geochronology and geochemistry of the Western and Central cordilleras and Sierra Nevada de Santa Marta, Colombia: The tectonic evolu on of NW South America. Thèse présentée à la Faculté des sciences de l’Université de Genève pour obtenir le grade de Docteur ès sciences, mention sciences de la Terre. Geneve, 125 p. ApendixesGoogle Scholar
  161. Villagómez D, Spikings R, Magna T, Kammer A, Winkler W, Alejandro Beltrán A (2011) Geochronology, geochemistry and tectonic evolution of the western and central cordilleras of Colombia. Lithos 125(2011):875–896CrossRefGoogle Scholar
  162. Villamil T (1994) High-resolultion stratigraphy, chronology and relaitve sea level of the Albian- Santonian (Cretaceous) of Colombia. Ph.D. Thesis Univ. Of Colorado at Boulder, 446 pGoogle Scholar
  163. Villamil T (1999) Campanian–Miocene tectonostratigraphy, depocenter evolution and basin development of Colombia and western Venezuela. Palaeogeogr Palaeoclimatol Palaeoecol 153(1999):239–275CrossRefGoogle Scholar
  164. Villamil T (2012) Chronology, relative sea level, and a new sequence stratigraphy model for distal offshore facies, Albian to Santonian, Colombia. In: Paleogeographic evolution and non-glacial Eustasy, northern South America. SEPM Special Publication No 58, pp 161–216Google Scholar
  165. Villamil T, Arango C (2012) Integrated stratigraphy of latest Cenomanian and early Turonian facies of Colombia. Paleogeographic evolution and non-glacial eustasy, Northern South America. SEPM Spec Publ 58:129–159Google Scholar
  166. Villamil T, Pindell JL (2012) Mesozoic paleogeographic evolution of northern South America: foundations for sequence stratigraphic studies in passive margin strata deposited during non-glacial times. In: Paleogeographic evolution and non-glacial Eustasy, northern South America. SEPM Special Publication No 58, pp 283–318Google Scholar
  167. Wilson JJ (1963) Cretaceous stratigraphy of central Andes of Peru. AAPG Bull 47:1–3Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luis Fernando Sarmiento-Rojas
    • 1
  1. 1.Independent ConsultantBogotáColombia

Personalised recommendations