Advertisement

Minimalistic Approach for Conservative Restorations

  • Michel Goldberg
Chapter

Abstract

The traditional restorative treatment of a carious decay implies traumatic preparation. Cleaning the softened demineralized dentin using manual or mechanical methods leads to geometrical preparation of cavities displaying flat surfaces (cervical and/or pulpal), at right angles from each other. Taking advantage from the geometry of the cavity, horizontal and plane surfaces contribute to preparation of cavities according to GV. Black’s principles (1908). Ultimately, the cavity is filled with a biocompatible material. All these successive steps refer to old concepts, as they were developed in textbook or in manuals published in the previous century.

The recent evolution of the preparation of cavities, adhesive properties of resin-containing cements or glass ionomers, and the biological properties of adhesive-containing materials leads to improve adhesion and promote atraumatic restorative treatment (ART). This is based on clinical decisions linked to caries risk assessment (CRA). The aims of minimal invasive therapy are oriented toward the reduction or evolution of carious lesion. These methods are focusing on the enhancement of methods of prevention, keeping the teeth functional for the whole life. These methods constitutes a whole set of investigations, avoiding unnecessary preventive measurements. Minimal approaches associate enamel and dentine carious lesions, linking the various stages of the lesion to the depth of the dentin decay.

References

  1. 1.
    Harichane Y, Hirata A, Dimitrova-Nakov S, Granja I, Goldberg M, Kellermann O, et al. Pulpal progenitors and dentin repair. Adv Dent Res. 2011;23:307–12.CrossRefGoogle Scholar
  2. 2.
    Goldberg M. Chapter 4 The early enamel carious lesion. In: Goldberg M, editor. Understanding dental caries. Basel: Springer; 2016. p. 29–39.CrossRefGoogle Scholar
  3. 3.
    Doméjean-Orliaguet S, Gansky SA, Featherstone JD. Caries risk assessment in an educational environment. J Dent Educ. 2006;70(12):1346–54.PubMedGoogle Scholar
  4. 4.
    Domejan S, Muller-Bolla M, JDB F. Invasive and non-invasive therapies; Chapter 19. In: Goldberg M, editor. Understanding dental caries. Basel: Springer International; 2016. p. 233–46.CrossRefGoogle Scholar
  5. 5.
    Banerjee A. Minimal intervention dentistry: part 7. Minimally invasive operative caries management: rationale and techniques. Br Dent J. 2013;214:107–11.CrossRefGoogle Scholar
  6. 6.
    Trope M, Serota K. Bio-minimalism: trends and transitions in endodontics 2016; 98:continuing education/dentaltown.com 98–103.
  7. 7.
    Black GV. Operative dentistry, vol. vol 1. Chicago: Medico-Dental; 1908.Google Scholar
  8. 8.
    Robinson C. Resin infiltration treatment for caries lesions. In: Goldberg M, editor. Understanding dental caries, vol. 17. Basel: Springer International; 2016. p. 199–209.CrossRefGoogle Scholar
  9. 9.
    Thesleff I. Current understanding of the presence of tooth formation: transfer from the laboratory to the clinic. Aust Dent J. 2014;59(s1):48–54.CrossRefGoogle Scholar
  10. 10.
    Cobourne MT, Sharpe PT. Tooth development chapter 3. In: AR H, ME F, editors. Fundamentals of oral histology and physiology. Ames: Wiley Blackwell; 2014. p. 44–59.Google Scholar
  11. 11.
    Dualibi MT, Duailibi SE, Young CS, Bartlett JD, Vacanti JP, Yelick PC. Bioengineered teeth from cultured rat tooth bud cells. J Dent Res. 2004;83:523–8.CrossRefGoogle Scholar
  12. 12.
    Gronthos S, Mankani M, Brahim J, Gehron Robey P, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97:13625–30.CrossRefGoogle Scholar
  13. 13.
    Goldberg M. Pulp healing and regeneration: more questions than answers. Adv Dent Res. 2011;23:270–4.CrossRefGoogle Scholar
  14. 14.
    Hirata A, Dimitrova-Nakov S, Djole SX, Ardila H, Baudry A, Kellermann O, et al. Plithotaxis, a collective cell migration, regulates the sliding of proliferating pulp cells located in the apical niche. Connect Tissue Res. 2014;55(Suppl 1):68–72.CrossRefGoogle Scholar
  15. 15.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.CrossRefGoogle Scholar
  16. 16.
    Sloan AJ, Waddington RJ. Dental pulp stem cells: what, where, how? Int J Paediatr Dent. 2009;19:61–70.CrossRefGoogle Scholar
  17. 17.
    Kenmotsu M, Matsuzaka K, Kokubu E, Azuma T, Inoue T. Analysis of side population cells derived from dental pulp tissue. Int Endo J. 2010;43:1132–42.CrossRefGoogle Scholar
  18. 18.
    Vidovic I, Banerjee A, Fatahi R, Mattews BG, Dyment NA, Kalajzic I, Mina M. αSMA-expressing perivascular cells represent dental pulp progenitors in vivo. J Dent Res. 2016;96(3):323–30.  https://doi.org/10.1177/0022034516678208.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, et al. Mesenchymal stem cell mediated functional tooth regeneration in swine. PLoS One. 2006;1:e79.CrossRefGoogle Scholar
  20. 20.
    Huang GTJ, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources. J Dent Res. 2009;88:792–806.CrossRefGoogle Scholar
  21. 21.
    Honda MJ, Immaizumi M, Tsuchiya S, Morsczeck C. Dental follicle stem cells and tissue engineering. J Oral Sci. 2010;52:541–52.CrossRefGoogle Scholar
  22. 22.
    Silvério KG, Rodrigues TL, Coletta RD, Benevides L, Da Silva JS, Casati MZ, et al. Mesenchymal stem cell properties of periodontal ligament cells from deciduous and permanent teeth. J Periodontol. 2010;81:1207–15.CrossRefGoogle Scholar
  23. 23.
    Hynes K, Menichanin D, Bright R, Ivanovski S, Hutmacher DW, Gronthos S, et al. Induced pluripotent stem cells: a new frontier for stem cells in dentistry. J Dent Res. 2015;94:1508–15.CrossRefGoogle Scholar
  24. 24.
    MacDougall M, Unterbrink A, Carnes D, Rani S, Luan X, Chen S. Utilization of MO6-G3 immortalized odontoblast cells in studies regarding dentinogenesis. Adv Dent Res. 2001;15:25–9.CrossRefGoogle Scholar
  25. 25.
    Hao J, Narayanan K, Ramachandran A, He G, Almushayt A, et al. Odontoblast cells immortalized by telomerase produce mineralized dentin-like tissue both in vitro and in vivo. J Biol Chem. 2002;277(22):19976–81.CrossRefGoogle Scholar
  26. 26.
    Priam F, Ronco V, Locker M, Bourd K, Bonnefoix M, et al. New cellular models for tracking the odontoblast phenotype. Arch Oral Biol. 2005;50(2):271–7.CrossRefGoogle Scholar
  27. 27.
    Lacerda-Pinheiro S, Dimitrova-Nakov S, Harichane Y, Souyri M, Petit-Cocault L, Legrès L, et al. Concomitant multipotent and unipotent dental pulp progenitors and their respective contribution to mineralised tissue formation. Eur Cell Mater. 2012;23:371–86.CrossRefGoogle Scholar
  28. 28.
    Oshima M, Mizuno M, Imamura A, Ogawa M, Yasukawa M, Yamazaki H, et al. Functional tooth regeneration using a bioengineered tooth unit as a mature organ replacement regenerative therapy. PLoS One. 2011;6:e21531.CrossRefGoogle Scholar
  29. 29.
    Baudry A, Alleaume-Butaux A, Dimitrova-Nakov S, Goldberg M, Schneider B, Launay JM, et al. Essential roles of dopamine and serotonin in tooth repair: functional interplay between odontogenic stem cells and platelets. Stem Cells. 2015;33:2586–95.CrossRefGoogle Scholar
  30. 30.
    Anurahda P, Yadav R. Minimal invasive dentistry: benefits and challenges. Arch Dent and Med Res. 2016;2(2):25–6.Google Scholar
  31. 31.
    Imazato S. Bio-active restorative materials with antibacterial effects: new dimension of innovation in restorative dentistry. Dent Mater J. 2009;28(1):11–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Michel Goldberg
    • 1
    • 2
  1. 1.UMRS-S 1124 Cellules souches, Signalisation et PrionsUniversité Paris DescartesParisFrance
  2. 2.Faculté des Sciences Fondamentales et Biomédicales des Saints PèresParisFrance

Personalised recommendations