Skip to main content

Laser Treatment of Leg Veins

  • Chapter
  • First Online:
Lasers in Dermatology and Medicine
  • 1650 Accesses

Abstract

Damaged venous valves result in varicose or spider vein formation. Commonly, venous obstruction is caused by increased pressure of reverse blood flow within the superficial venous valve or from direct traumatic injury to the vein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Callam MJ. Epidemiology of varicose veins. Br J Surg. 1994;81:167–73.

    Article  CAS  Google Scholar 

  2. Abramson JH, Hopp C, Epstein LM. The epidemiology of varicose veins. A survey in western Jerusalem. J Epidemiol Community Health. 1981;35:213–7.

    Article  CAS  Google Scholar 

  3. Segiet OA, Brzozowa-Zasada M, Piecuch A, Dudek D, Reichman-Warmusz E, Wojnicz R. Biomolecular mechanisms in varicose veins development. Ann Vasc Surg. 2015;29:377–84.

    Article  Google Scholar 

  4. Woźniak W, Mlosek RK, Ciostek P. Assessment of the efficacy and safety of steam vein sclerosis as compared to classic surgery in lower extremity varicose vein management. Wideochir Inne Tech Malo Inwazyjne. 2015;10:15–24.

    PubMed  PubMed Central  Google Scholar 

  5. Kakkos SK, Rivera MA, Matsagas MI, et al. Validation of the new venous severity scoring system in varicose vein surgery. J Vasc Surg. 2003;38:224–8.

    Article  Google Scholar 

  6. De Maeseneer M, Pichot O, Cavezzi A, et al. Duplex ultrasound investigation of the veins of the lower limbs after treatment for varicose veins - UIP consensus document. Eur J Vasc Endovasc Surg. 2011;42:89–102.

    Article  Google Scholar 

  7. Weiss RA, Sadick NS, Goldman MP, Weiss MA. Post-sclerotherapy compression: controlled comparative study of duration of compression and its effects on clinical outcome. Dermatol Surg. 1999;25:105–8.

    Article  CAS  Google Scholar 

  8. Biswas S, Clark A, Shields DA. Randomised clinical trial of the duration of compression therapy after varicose vein surgery. Eur J Vasc Endovasc Surg. 2007;33:631–7.

    Article  CAS  Google Scholar 

  9. Weiss RA, Duffy D. Clinical benefits of lightweight compression: reduction of venous-related symptoms by ready-to-wear lightweight gradient compression hosiery. Dermatol Surg. 1999;25:701–4.

    Article  CAS  Google Scholar 

  10. Coles CM, Werner RS, Zelickson BD. Comparative pilot study evaluating the treatment of leg veins with a long pulse ND:YAG laser and sclerotherapy. Lasers Surg Med. 2002;30:154–9.

    Article  Google Scholar 

  11. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220:524–7.

    Article  CAS  Google Scholar 

  12. Ross EV, Domankevitz Y. Laser treatment of leg veins: Physical mechanisms and theoretical considerations. Lasers Surg Med. 2005;36:105–16.

    Article  Google Scholar 

  13. Altshuler GB, Anderson RR, Manstein D, Zenzie HH, Smirnov MZ. Extended theory of selective photothermolysis. Lasers Surg Med. 2001;29:416–32.

    Article  CAS  Google Scholar 

  14. Parlette EC, Groff WF, Kinshella MJ, Domankevitz Y, O'Neill J, Ross EV. Optimal pulse durations for the treatment of leg telangiectasias with a neodymium YAG laser. Lasers Surg Med. 2006;38:98–105.

    Article  Google Scholar 

  15. Black JF, Wade N, Barton JK. Mechanistic comparison of blood undergoing laser photocoagulation at 532 and 1,064 nm. Lasers Surg Med. 2005;36:155–65.

    Article  Google Scholar 

  16. Ross EV, Ladin Z, Kreindel M, Dierickx C. Theoretical considerations in laser hair removal. Dermatol Clin. 1999;17:333–55. viii.

    Article  CAS  Google Scholar 

  17. Kauvar AN, Khrom T. Laser treatment of leg veins. Semin Cutan Med Surg. 2005;24:184–92.

    Article  CAS  Google Scholar 

  18. Kunishige JH, Goldberg LH, Friedman PM. Laser therapy for leg veins. Clin Dermatol. 2007;25:454–61.

    Article  Google Scholar 

  19. Spendel S, Prandl EC, Schintler MV, et al. Treatment of spider leg veins with the KTP (532 nm) laser--a prospective study. Lasers Surg Med. 2002;31:194–201.

    Article  Google Scholar 

  20. Trelles MA, Allones I, Alvarez J, et al. The 800-nm diode laser in the treatment of leg veins: assessment at 6 months. J Am Acad Dermatol. 2006;54:282–9.

    Article  Google Scholar 

  21. Trelles MA, Martín-Vázquez M, Trelles OR, Mordon SR. Treatment effects of combined radio-frequency current and a 900 nm diode laser on leg blood vessels. Lasers Surg Med. 2006;38:185–95.

    Article  Google Scholar 

  22. McDaniel DH, Ash K, Lord J, Newman J, Adrian RM, Zukowski M. Laser therapy of spider leg veins: clinical evaluation of a new long pulsed alexandrite laser. Dermatol Surg. 1999;25:52–8.

    Article  CAS  Google Scholar 

  23. Kauvar AN, Lou WW. Pulsed alexandrite laser for the treatment of leg telangiectasia and reticular veins. Arch Dermatol. 2000;136:1371–5.

    CAS  PubMed  Google Scholar 

  24. Eremia S, Li C, Umar SH. A side-by-side comparative study of 1064 nm Nd:YAG, 810 nm diode and 755 nm alexandrite lasers for treatment of 0.3-3 mm leg veins. Dermatol Surg. 2002;28:224–30.

    PubMed  Google Scholar 

  25. Klein A, Buschmann M, Babilas P, Landthaler M, Bäumler W. Indocyanine green-augmented diode laser therapy vs. long-pulsed Nd:YAG (1064 nm) laser treatment of telangiectatic leg veins: a randomized controlled trial. Br J Dermatol. 2013;169:365–73.

    Article  CAS  Google Scholar 

  26. Lupton JR, Alster TS, Romero P. Clinical comparison of sclerotherapy versus long-pulsed Nd:YAG laser treatment for lower extremity telangiectases. Dermatol Surg. 2002;28:694–7.

    PubMed  Google Scholar 

  27. Munia MA, Wolosker N, Munia CG, Chao WS, Puech-Leão P. Comparison of laser versus sclerotherapy in the treatment of lower extremity telangiectases: a prospective study. Dermatol Surg. 2012;38:635–9.

    Article  CAS  Google Scholar 

  28. Levy JL, Elbahr C, Jouve E, Mordon S. Comparison and sequential study of long pulsed Nd:YAG 1,064 nm laser and sclerotherapy in leg telangiectasias treatment. Lasers Surg Med. 2004;34:273–6.

    Article  Google Scholar 

  29. Parlar B, Blazek C, Cazzaniga S, et al. Treatment of lower extremity telangiectasias in women by foam sclerotherapy vs. Nd:YAG laser: a prospective, comparative, randomized, open-label trial. J Eur Acad Dermatol Venereol. 2015;29:549–54.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie K. Karen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karen, J.K., Callahan, S. (2018). Laser Treatment of Leg Veins. In: Nouri, K. (eds) Lasers in Dermatology and Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-76118-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76118-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76116-9

  • Online ISBN: 978-3-319-76118-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics