Laser-Tissue Interactions

  • Amanda Abramson Lloyd
  • Michael S. Graves
  • Edward Victor RossEmail author


The best gauge of laser interactions is the tissue response, and experiment is the most realistic manner to address medical treatment challenges. However, theoretical models are helpful in planning treatment approaches and laser parameters. In this chapter we discuss basics of lasers, their non laser counterparts, and laser-tissue interactions.

Many physicians choose laser settings out of habit (or reading it off of a label attached to the side of the machine—a “cheat” sheet with skin-type specific parameters), using tissue endpoints to confirm the appropriateness of the parameters. For example, when treating a tattoo with a Q-switched laser, the operator looks for immediate frosty whitening. Like driving a car (where the operator may have no idea about nature of the drive train components), successful laser operation does not demand a complete understanding of the machine or the details of the light-tissue interaction. However, a comprehension of first principles allows for a logical analysis of final clinical outcomes—furthermore, more creative uses of equipment should follow. For example, with an education in laser tissue interactions (LTIs) and tissue cooling, one can deploy the alexandrite (long pulse) laser either as a hair removal device, vascular laser, or to remove lentigines.

The reader should note that although the title of this chapter is “Laser Tissue Interactions”, the introduction of many new and diverse technologies make the term somewhat obsolete. We will continue to use the term, but a more appropriate term is “energy–tissue interactions.” As both radiofrequency and ultrasound are increasingly applied in medicine. We will use both terms interchangeably in the remainder of the text.


Laser Radiofrequency Ultrasound Skin Lentigines Hair removal Vascular Dermatology 


  1. 1.
    Jacques SL. Laser-tissue interactions. Photochemical, photothermal, and photomechanical. Surg Clin North Am. 1992;72:531–58.PubMedCrossRefGoogle Scholar
  2. 2.
    Ross E, Anderson R. Laser tissue interactions. In: Goldman M, editor. Cutaneous and cosmetic laser surgery. Philadelphia, PA: Elsevier; 2006.Google Scholar
  3. 3.
    Anderson RR, Parrish JA. The optics of human skin. J Invest Dermatol. 1981;77:13–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Grossweiner L. The science of phototherapy. Boca Raton, FL: CRC Press; 1994.Google Scholar
  5. 5.
    Wan S, Anderson RR, Parrish JA. Analytical modeling for the optical properties of the skin with in vitro and in vivo applications. Photochem Photobiol. 1981;34:493–9.PubMedCrossRefGoogle Scholar
  6. 6.
    van Gemert MJ, Jacques SL, Sterenborg HJ, et al. Skin optics. IEEE Trans Biomed Eng. 1989;36:1146–54.PubMedCrossRefGoogle Scholar
  7. 7.
    Jacques S. Skin optics summary. Accessed September 2007.
  8. 8.
    Jacques SL, Prahl SA. Modeling optical and thermal distributions in tissue during laser irradiation. Lasers Surg Med. 1987;6:494–503.PubMedCrossRefGoogle Scholar
  9. 9.
    Hillenkamp F. Interaction between laser radiation and biological systems. In: Hillenkamp FRP, Sacchi C, editors. Lasers in medicine and biology, Series A. New York, NY: Plenum; 1980. p. 37–68.CrossRefGoogle Scholar
  10. 10.
    Anderson R, Ross E. Laser-tissue interactions. In: Fitzpatrick R, Goldman M, editors. Cosmetic laser surgery. St. Louis, MO: Mosby; 2000. p. 1–30.Google Scholar
  11. 11.
    Katzir A. Lasers and optical fibers in medicine. San Diego, CA: Academic; 1993.Google Scholar
  12. 12.
    Ross EV. Laser versus intense pulsed light: competing technologies in dermatology. Lasers Surg Med. 2006;38:261–72.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Anderson R. Laser tissue interactions. In: Goldman M, Fitzparick R, editors. Cutaneous laser surgery-the art and science of selective photothermolysis. St. Louis, MO: Mosby; 1994. p. 3–5.Google Scholar
  14. 14.
    Reinisch L. Laser physics and tissue interactions. Otolaryngol Clin North Am. 1996;29:893–914.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ross EV, Smirnov M, Pankratov M, et al. Intense pulsed light and laser treatment of facial telangiectasias and dyspigmentation: some theoretical and practical comparisons. Dermatol Surg. 2005;31:1188–98.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Boulnois J. Photophysical processes in recent medical laser developments - a review. Lasers Med Sci. 1986;1:47–66.CrossRefGoogle Scholar
  17. 17.
    Welch AJ, van Gemert MJ. Overview of optical and thermal interaction and nomenclature. In: Welch AJ, van Gemert MJ, editors. Optical thermal response of laser-irradiated tissue. New York, NY: Plenum; 1995. p. 1–14.CrossRefGoogle Scholar
  18. 18.
    Fisher JC. Basic biophysical principles of resurfacing of human skin by means of the carbon dioxide laser. J Clin Laser Med Surg. 1996;14:193–210.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Tanghetti E, Sierra RA, Sherr EA, et al. Evaluation of pulse-duration on purpuric threshold using extended pulse pulsed dye laser (cynosure V-star). Lasers Surg Med. 2002;31:363–6.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Reinisch L, Ossoff RH. Laser applications in otolaryngology. Otolaryngol Clin North Am. 1996;29:891–2.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Shafirstein G, Baumler W, Lapidoth M, et al. A new mathematical approach to the diffusion approximation theory for selective photothermolysis modeling and its implication in laser treatment of portwine stains. Lasers Surg Med. 2004;34:335–47.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Raulin C, Greve B, Warncke SH, et al. Excimer laser. Treatment of iatrogenic hypopigmentation following skin resurfacing. Hautarzt. 2004;55:746–8.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Alexiades-Armenakas MR, Bernstein LJ, Friedman PM, et al. The safety and efficacy of the 308-nm excimer laser for pigment correction of hypopigmented scars and striae alba. Arch Dermatol. 2004;140:955–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Gold MH, Goldman MP. 5-aminolevulinic acid photodynamic therapy: where we have been and where we are going. Dermatol Surg. 2004;30:1077–83.PubMedGoogle Scholar
  25. 25.
    Itkin A, Gilchrest BA. delta-Aminolevulinic acid and blue light photodynamic therapy for treatment of multiple basal cell carcinomas in two patients with nevoid basal cell carcinoma syndrome. Dermatol Surg. 2004;30:1054–61.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220:524–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Anderson RR, Parrish JA. Lasers in dermatology provide a model for exploring new applications in surgical oncology. Int Adv Surg Oncol. 1982;5:341–58.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Anderson RR, Parrish JA. Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin. Lasers Surg Med. 1981;1:263–76.PubMedCrossRefGoogle Scholar
  29. 29.
    Black JF, Barton JK. Chemical and structural changes in blood undergoing laser photocoagulation. Photochem Photobiol. 2004;80:89–97.PubMedCrossRefGoogle Scholar
  30. 30.
    Kono T, Manstein D, Chan HH, et al. Q-switched ruby versus longpulsed dye laser delivered with compression for treatment of facial lentigines in Asians. Lasers Surg Med. 2006;38:94–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Avram DK, Goldman MP. Effectiveness and safety of ALA-IPL in treating actinic keratoses and photodamage. J Drugs Dermatol. 2004;3(Suppl 1):S36–9.PubMedGoogle Scholar
  32. 32.
    Gold MH, Bradshaw VL, Boring MM, et al. The use of a novel intense pulsed light and heat source and ALA-PDT in the treatment of moderate to severe inflammatory acne vulgaris. J Drugs Dermatol. 2004;3(Suppl 6):S15–9.PubMedGoogle Scholar
  33. 33.
    Trafeli JP, Kwan JM, Meehan KJ, et al. Use of a long-pulse alexandrite laser in the treatment of superficial pigmented lesions. Dermatol Surg. 2007;33:1477–82.PubMedCrossRefGoogle Scholar
  34. 34.
    McDaniel DH, Ash K, Lord J, et al. Laser therapy of spider leg veins: clinical evaluation of a new long pulsed alexandrite laser. Dermatol Surg. 1999;25:52–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Dover JS. New approaches to the laser treatment of vascular lesions. Australas J Dermatol. 2000;41:14–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Kauvar AN, Lou WW. Pulsed alexandrite laser for the treatment of leg telangiectasia and reticular veins. Arch Dermatol. 2000;136:1371–5.PubMedGoogle Scholar
  37. 37.
    Eremia S, Li C, Umar SH. A side-by-side comparative study of 1064 nm Nd:YAG, 810 nm diode and 755 nm alexandrite lasers for treatment of 0.3-3 mm leg veins. Dermatol Surg. 2002;28:224–30.PubMedGoogle Scholar
  38. 38.
    Passeron T, Olivier V, Duteil L, et al. The new 940-nanometer diode laser: an effective treatment for leg venulectasia. J Am Acad Dermatol. 2003;48:768–74.PubMedCrossRefGoogle Scholar
  39. 39.
    Paithankar DY, Clifford JM, Saleh BA, et al. Subsurface skin renewal by treatment with a 1450-nm laser in combination with dynamic cooling. J Biomed Opt. 2003;8:545–51.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Zelickson B, Ross V, Kist D, et al. Ultrastructural effects of an infrared handpiece on forehead and abdominal skin. Dermatol Surg. 2006;32:897–901.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Majaron B, Verkruysse W, Kelly KM, et al. Er:YAG laser skin resurfacing using repetitive long-pulse exposure and cryogen spray cooling: II. Theoretical analysis. Lasers Surg Med. 2001;28:131–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Majaron B, Kelly KM, Park HB, et al. Er:YAG laser skin resurfacing using repetitive long-pulse exposure and cryogen spray cooling: I. Histological study. Lasers Surg Med. 2001;28:121–31.PubMedCrossRefGoogle Scholar
  43. 43.
    Ross EV, Yashar SS, Naseef GS, et al. A pilot study of in vivo immediate tissue contraction with CO2 skin laser resurfacing in a live farm pig. Dermatol Surg. 1999;25:851–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Ross EV, Grossman MC, Duke D, et al. Long-term results after CO2 laser skin resurfacing: a comparison of scanned and pulsed systems. J Am Acad Dermatol. 1997;37:709–18.PubMedCrossRefGoogle Scholar
  45. 45.
    Pearce J, Thomsen SL. Rate process analysis of thermal damage. In: Welch AJ, van Gemert MJ, editors. Optical thermal response of laser-irradiated tissue. New York, NY: Plenum; 1995. p. 561–608.CrossRefGoogle Scholar
  46. 46.
    Welch AJ, Yoon G, van Gemert MJ. Practical models for light distribution in laser-irradiated tissue. Lasers Surg Med. 1987;6:488–93.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang L, Jacques S, Zheng L. MCML - Monte Carlo modeling of photon transport in multi-layered tissues. Comput Methods Programs Biomed. 1995;47:131.PubMedCrossRefGoogle Scholar
  48. 48.
    Jacques S. Simple optical theory for light dosimetry during PDT. In: Tuchin V, editor. Selected papers on tissue optics, MS 102, vol. 655. Bellingham, WA: SPIE - International Society for Optical Engineering; 1992.Google Scholar
  49. 49.
    Stamatas GN, Kollias N. Blood stasis contributions to the perception of skin pigmentation. J Biomed Opt. 2004;9:315–22.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Niemz M. Laser-tissue interactions. 2nd ed. Berlin: Springer; 2002.CrossRefGoogle Scholar
  51. 51.
    Anderson RR, Farinelli W, Laubach H, et al. Selective photothermolysis of lipid-rich tissues: a free electron laser study. Lasers Surg Med. 2006;38:913–9.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Ellis DL, Weisberg NK, Chen JS, et al. Free electron laser infrared wavelength specificity for cutaneous contraction. Lasers Surg Med. 1999;25:1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Goldman L, Rockwell RJ. Laser action at the cellular level. JAMA. 1966;198:641–4.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Anderson RR. Laser medicine in dermatology. J Dermatol. 1996;23:778–82.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Altshuler GB, Anderson RR, Manstein D, et al. Extended theory of selective photothermolysis. Lasers Surg Med. 2001;29:416–32.PubMedCrossRefGoogle Scholar
  56. 56.
    Anderson RR, Margolis RJ, Watenabe S, et al. Selective photothermolysis of cutaneous pigmentation by Q-switched Nd: YAG laser pulses at 1064, 532, and 355 nm. J Invest Dermatol. 1989;93:28–32.PubMedCrossRefGoogle Scholar
  57. 57.
    Parrish JA, Anderson RR, Harrist T, et al. Selective thermal effects with pulsed irradiation from lasers: from organ to organelle. J Invest Dermatol. 1983;80(Suppl):75s–80s.PubMedCrossRefGoogle Scholar
  58. 58.
    Anderson RR, Jaenicke KF, Parrish JA. Mechanisms of selective vascular changes caused by dye lasers. Lasers Surg Med. 1983;3:211–5.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Itzkan I, Izatt J. Medical use of lasers. In: Encyclopedia of applied physics. Washington, DC: VCH Publishers, Inc. & American Institute of Physics; 1994. p. 33–59.Google Scholar
  60. 60.
    Black JF, Wade N, Barton JK. Mechanistic comparison of blood undergoing laser photocoagulation at 532 and 1, 064 nm. Lasers Surg Med. 2005;36:155–65.PubMedCrossRefGoogle Scholar
  61. 61.
    Polla BS, Anderson RR. Thermal injury by laser pulses: protection by heat shock despite failure to induce heat-shock response. Lasers Surg Med. 1987;7:398–404.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Beckham JT, Mackanos MA, Crooke C, et al. Assessment of cellular response to thermal laser injury through bioluminescence imaging of heat shock protein 70. Photochem Photobiol. 2004;79:76–85.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kollias N, Gillies R, Moran M, et al. Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging. J Invest Dermatol. 1998;111:776–80.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Alexiades-Armenakas MR, Geronemus RG. Laser-mediated photodynamic therapy of actinic cheilitis. J Drugs Dermatol. 2004;3:548–51.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Karrer S, Baumler W, Abels C, et al. Long-pulse dye laser for photodynamic therapy: investigations in vitro and in vivo. Lasers Surg Med. 1999;25:51–9.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Seguchi K, Kawauchi S, Morimoto Y, et al. Critical parameters in the cytotoxicity of photodynamic therapy using a pulsed laser. Lasers Med Sci. 2002;17:265–71.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Sterenborg HJ, van Gemert MJ. Photodynamic therapy with pulsed light sources: a theoretical analysis. Phys Med Biol. 1996;41:835–49.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Smith TK, Choi B, Ramirez-San-Juan JC, et al. Microvascular blood flow dynamics associated with photodynamic therapy, pulsed dye laser irradiation and combined regimens. Lasers Surg Med. 2006;38:532–9.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Parrish JA, Jaenicke KF. Action spectrum for phototherapy of psoriasis. J Investig Dermatol. 1981;76:359–62.PubMedCrossRefGoogle Scholar
  70. 70.
    Weiss RA, McDaniel DH, Geronemus RG, et al. Clinical trial of a novel non-thermal LED array for reversal of photoaging: clinical, histologic, and surface profilometric results. Lasers Surg Med. 2005;36:85–91.PubMedCrossRefGoogle Scholar
  71. 71.
    Hohenleutner U, Walther T, Wenig M, et al. Leg telangiectasia treatment with a 1.5 ms pulsed dye laser, ice cube cooling of the skin and 595 vs 600 nm: preliminary results. Lasers Surg Med. 1998;23:72–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Greve B, Hammes S, Raulin C. The effect of cold air cooling on 585 nm pulsed dye laser treatment of port-wine stains. Dermatol Surg. 2001;27:633–6.PubMedGoogle Scholar
  73. 73.
    Chan HH, Lam LK, Wong DS, et al. Role of skin cooling in improving patient tolerability of Q-switched Alexandrite (QS Alex) laser in nevus of Ota treatment. Lasers Surg Med. 2003;32:148–51.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Raulin C, Greve B, Hammes S. Cold air in laser therapy: first experiences with a new cooling system. Lasers Surg Med. 2000;27:404–10.PubMedCrossRefGoogle Scholar
  75. 75.
    Huang PS, Chang CJ. Cryogen spray cooling in conjunction with pulse dye laser treatment of port wine stains of the head and neck. Chang Gung Med J. 2001;24:469–75.PubMedGoogle Scholar
  76. 76.
    Weiss RA, Sadick NS. Epidermal cooling crystal collar device for improved results and reduced side effects on leg telangiectasias using intense pulsed light. Dermatol Surg. 2000;26:1015–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Tunnell JW, Nelson JS, Torres JH, et al. Epidermal protection with cryogen spray cooling during high fluence pulsed dye laser irradiation: an ex vivo study. Lasers Surg Med. 2000;27:373–83.PubMedCrossRefGoogle Scholar
  78. 78.
    Kelly KM, Nelson JS, Lask GP, et al. Cryogen spray cooling in combination with nonablative laser treatment of facial rhytides. Arch Dermatol. 1999;135:691–4.PubMedCrossRefGoogle Scholar
  79. 79.
    Zenzie HH, Altshuler GB, Smirnov MZ, et al. Evaluation of cooling methods for laser dermatology. Lasers Surg Med. 2000;26:130–44.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Almoallim H, Klinkhoff AV, Arthur AB, et al. Laser induced chrysiasis: disfiguring hyperpigmentation following Q-switched laser therapy in a woman previously treated with gold. J Rheumatol. 2006;33:620–1.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Trotter MJ, Tron VA, Hollingdale J, et al. Localized chrysiasis induced by laser therapy. Arch Dermatol. 1995;131:1411–4.PubMedCrossRefGoogle Scholar
  82. 82.
    Franco W, Childers M, Nelson JS, et al. Laser surgery of port wine stains using local vacuum [corrected] pressure: changes in calculated energy deposition (Part II). Lasers Surg Med. 2007;39:118–27.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Childers MA, Franco W, Nelson JS, et al. Laser surgery of port wine stains using local vacuum pressure: changes in skin morphology and optical properties (Part I). Lasers Surg Med. 2007;39:108–17.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Manstein D, Herron GS, Sink RK, et al. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med. 2004;34:426–38.PubMedCrossRefGoogle Scholar
  85. 85.
    Jaffe BH, Walsh JT Jr., Water flux from partial-thickness skin wounds: comparative study of the effects of Er:YAG and Ho:YAG lasers. Lasers Surg Med. 1996;18(1):1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Dierickx CC. Hair removal by lasers and intense pulsed light sources. Semin Cutan Med Surg. 2000;19:267–75.PubMedCrossRefGoogle Scholar
  87. 87.
    Jasim ZF, Handley JM. Treatment of pulsed dye laser-resistant port wine stain birthmarks. J Am Acad Dermatol. 2007;57:677–82.PubMedCrossRefGoogle Scholar
  88. 88.
    Choi B, Tsu L, Chen E, et al. Determination of chemical agent optical clearing potential using in vitro human skin. Lasers Surg Med. 2005;36:72–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Biesman BS, O'Neil MP, Costner C. Rapid, high‐fluence multi‐pass q‐switched laser treatment of tattoos with a transparent perfluorodecalin‐infused patch: A pilot study. Lasers Surg Med. 2015;47(8):613–8.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Lapotko D, Shnip A, Lukianova E. Photothermal responses of individual cells. J Biomed Opt. 2005;10:14006.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Anderson RR. Polarized light examination and photography of the skin. Arch Dermatol. 1991;127:1000–5.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Pitsillides CM, Joe EK, Wei X, et al. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J. 2003;84:4023–32.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Reinisch L. Scatter-limited phototherapy: a model for laser treatment of skin. Lasers Surg Med. 2002;30:381–8.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Carniol PJ, Maas CS. Bipolar radiofrequency resurfacing. Facial Plast Surg Clin North Am. 2001;9:337–42.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Ruiz-Esparza J, Gomez JB. The medical face lift: a noninvasive, nonsurgical approach to tissue tightening in facial skin using nonablative radiofrequency. Dermatol Surg. 2003;29:325–32. discussion 32.PubMedGoogle Scholar
  96. 96.
    Sadick NS. Update on non-ablative light therapy for rejuvenation: a review. Lasers Surg Med. 2003;32:120–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Koch RJ. Radiofrequency nonablative tissue tightening. Facial Plast Surg Clin North Am. 2004;12:339–46.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Franco W, et al. Hyperthermic injury to adipocyte cells by selective heating of subcutaneous fat with a novel radiofrequency device: feasibility studies. Lasers Surg Med. 2010;42(5):361–70.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Sadick NS, Makino Y. Selective electro-thermolysis in aesthetic medicine: a review. Lasers Surg Med. 2004;34(2):91–7.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Zelickson BD, Kist D, Bernstein E, et al. Histological and ultrastructural evaluation of the effects of a radiofrequency-based nonablative dermal remodeling device: a pilot study. Arch Dermatol. 2004;140:204–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Duck F. Physical properties of tissue. A comprehensive reference book, edited by Francis A. Duck. Med Phys. 1991;18(4):173–834.Google Scholar
  102. 102.
    Carruthers J, Fabi S, Weiss R. Monopolar radiofrequency for skin tightening: our experience and a review of the literature. Dermatol Surg. 2014;40(Suppl 12):S168–73.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Weiss R, et al. Operator independent focused high frequency ISM band for fat reduction: porcine model. Lasers Surg Med. 2013;45(4):235–9.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Fajkosova K, et al. Selective radiofrequency therapy as a non-invasive approach for contactless body contouring and circumferential reduction. J Drugs Dermatol. 2014;13(3):291–6.PubMedPubMedCentralGoogle Scholar
  105. 105.
    White WM, Makin IR, Slayton MH, Barthe PG, Gliklich R. Selective transcutaneous delivery of energy to porcine soft tissues using Intense Ultrasound (IUS). Lasers Surg Med. 2008;40(2):67–75.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    White WM, Makin IR, Barthe PG, Slayton MH, Gliklich RE. Selective creation of thermal injury zones in the superficial musculoaponeurotic system using intense ultrasound therapy: a new target for noninvasive facial rejuvenation. Arch Facial Plast Surg. 2007;9(1):22–9.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Amanda Abramson Lloyd
    • 1
  • Michael S. Graves
    • 2
  • Edward Victor Ross
    • 3
    Email author
  1. 1.Skin and Vein InstituteEncinitasUSA
  2. 2.Southwest Skin Cancer and Vein ClinicAustinUSA
  3. 3.Laser and Cosmetic DermatologyScripps ClinicSan DiegoUSA

Personalised recommendations