Magnetic Pulse Compaction

  • Eugene A. Olevsky
  • Dina V. Dudina


In this chapter, the principles and equipment for magnetic pulse compaction (MPC) of powder materials are introduced. Modeling of uniaxial and radial MPC is described. Selected examples of application of MPC to different materials are presented.


Magnetic pulse compaction Uniaxial Radial Quasi-dynamic compaction Nanopowder 


  1. 1.
    Mironov VA (1980) Magnetic pulsed pressing of powders. Zinatie, Riga, USSR, 196 p, (in Russian)Google Scholar
  2. 2.
    Sandstrom DJ (1964) Consolidating metal powders magnetically. Met Prog 8:215–221Google Scholar
  3. 3.
    Barbarovich YK (1969) Use of the energy of a strong pulsed magnetic field for powder compaction. Soviet Powder Metall Metal Ceram 8(10):798–803CrossRefGoogle Scholar
  4. 4.
    Knopfel G (1972) Superstrong magnetic fields. Mir, Moscow, 383 p, (in Russian)Google Scholar
  5. 5.
    Ivanov VV, Paranin SN, Vikhrev AN, Nozdrin AA (1997) Materialovedenie (Materials Science) 5:49 (in Russian)Google Scholar
  6. 6.
    Ivanov VV, Vikhrev AN (1997) Fizika I Khimiya Obrabotki Materialov. Phys Chem Mater Process 3:67 (in Russian)Google Scholar
  7. 7.
    Paranin S, Ivanov V, Nikonov A, Spirin A, Khrustov V, Ivin S, Kaygorodov A, Korolev P (2006) Densification of nano-sized alumina powders under radial magnetic pulsed compaction. Adv Sci Technol 45:899–904CrossRefGoogle Scholar
  8. 8.
    Ivanov VV, Ivin SY, Khrustov VR, Kotov YA, Murzakaev AM, Nikonov AV, Paranin SN, Spirin AV (2005) Fabrication of nanoceramic thin-wall tubes by magnetic pulsed compaction and thermal sintering. Sci Sinter 37:55–60CrossRefGoogle Scholar
  9. 9.
    Boltachev GS, Nagayev KA, Paranin SN, Spirin AV, Volkov NB (2010) Magnetic pulsed compaction of nanosized powders. Nova Science Publishers, New YorkGoogle Scholar
  10. 10.
    Boltachev GS, Volkov NB, Kaygorodov AS, Loznukho VP (2011) The peculiarities of uniaxial quasistatic compaction of oxide nanopowders. Nanotechnologies Russia 6(9–10):639–646CrossRefGoogle Scholar
  11. 11.
    Park HY, Fatih Kilicaslan M, Hong SJ (2012) Effect of multiple pressures by magnetic pulsed compaction (MPC) on the density of gas-atomized Al-20Si powder. Powder Technol 224:360–364CrossRefGoogle Scholar
  12. 12.
    Li M, Yu H, Li C (2010) Microstructure and mechanical properties of Ti6Al4V powder compacts prepared by magnetic pulse compaction. Trans Nonferrous Met Soc China 20:553–558CrossRefGoogle Scholar
  13. 13.
    Dobrov SV, Ivanov VV (2004) Simulation of pulsed magnetic molding of long powdered products. Tech Phys 49:413–419Google Scholar
  14. 14.
    Boltachev GS, Volkov NB, Ivanov VV, Kaygorodov AS (2009) Shock-wave compaction of the granular medium initiated by magnetically pulsed accelerated striker. Acta Mech 204:37–50CrossRefGoogle Scholar
  15. 15.
    Boltachev GS, Kaygorodov AS, Volkov NB (2009) Densification of the granular medium by the low amplitude shock waves. Acta Mech 207:223–234CrossRefGoogle Scholar
  16. 16.
    Boltachev GS, Nagayev KA, Paranin SN, Spirin AV, Volkov NB (2010) Theory of the magnetic pulsed compaction of nanosized powders. In: Cabral V, Silva R (eds) Nanomaterials: properties, preparation and processes. Nova Science Publishers, New York, pp 1–58Google Scholar
  17. 17.
    Boltachev GS, Volkov NB, Dobrov SV, Ivanov VV, Nozdrin AA, Paranin SN (2007) Simulation of radial pulsed magnetic compaction of a granulated medium in a quasi-static approximation. Tech Phys 52(10):1306–1315CrossRefGoogle Scholar
  18. 18.
    Boltachev GS, Volkov NB, Paranin SN, Spirin AV (2010) Dynamics of cylindrical conducting shells in a pulsed longitudinal magnetic field. Tech Phys 55:753–761CrossRefGoogle Scholar
  19. 19.
    Boltachev GS, Volkov NB (2009) Expansion of a conducting shell by magnetic field of an external inductor. Tech Phys Lett 35:334–336CrossRefGoogle Scholar
  20. 20.
    Boltachev GS, Volkov NB (2009) Bimetallic cylinder in a pulsed magnetic field. Tech Phys Lett 35:916–919CrossRefGoogle Scholar
  21. 21.
    Olevsky EA, Bokov AA, Boltachev GS, Volkov NB, Zayats SZ, Ilyina AM, Nozdrin AA, Paranin SN (2013) Modeling and optimization of uniaxial magnetic pulse compaction of nanopowders. Acta Mech 224(12):3177–3195CrossRefGoogle Scholar
  22. 22.
    Shtern MB, Serdyuk GG, Maksimenko LA, Truhan YV, Shulyakov YM (1982) Phenomenological theories of powder pressing. Naukova Dumka, Kiev (in Russian)Google Scholar
  23. 23.
    Olevsky E (1998) Theory of sintering: from discrete to continuum. Mater Sci Eng R 23:41–100CrossRefGoogle Scholar
  24. 24.
    Olevsky EA, Molinari A (2000) Instability of sintering of porous bodies. Int J Plast 16:1–37CrossRefGoogle Scholar
  25. 25.
    Olevsky EA, Molinari A (2006) Kinetics and stability in compressive and tensile loading of porous bodies. Mech Mater 38:340–366CrossRefGoogle Scholar
  26. 26.
    Olevsky EA, LaSalvia JC, Ma J, Meyers MA (2007) Densification of porous bodies in a granular pressure-transmitting medium. Acta Mater 55:1351–1366CrossRefGoogle Scholar
  27. 27.
    Shtern M, Olevsky E (2008) Plastic behavior of agglomerated powder. Comput Mater Sci 43:704–709CrossRefGoogle Scholar
  28. 28.
    Ivashutenko AS (2010) Alumina-zirconia nanoceramics obtained with the use of high energy flows. PhD Dissertation, Tomsk Polytechnic University, Tomsk (in Russian)Google Scholar
  29. 29.
    Yu HP, Li CF (2007) Dynamic compaction of pure copper powder using pulsed magnetic force. Acta Metall Sin (English Letters) 20(4):277–283CrossRefGoogle Scholar
  30. 30.
    Andrievskii RA, Vikhrev AN, Ivanov VV, Kuznetsov RI, Noskova NI, Sazonova VA (1996) Magnetic-pulse and high-pressure shear-strain compaction of nanocrystalline titanium nitride. Fiz Metall Metalloved 81:137–145 (in Russian)Google Scholar
  31. 31.
    Ivanov VV, Kotov YA, Samatov OH, Böhme R, Karow HU, Schumacher G (1995) Synthesis and dynamic compaction of ceramic nano powders by techniques based on electric pulsed power. Nanostruct Mater 6(1–4):287–290CrossRefGoogle Scholar
  32. 32.
    Nozdrin AA (2007) Investigation of the possibilities of dynamic pressing of alumina-based nanopowders. Perspectivnye Materialy 6:79 (in Russian)Google Scholar
  33. 33.
    Boltachev GS, Volkov NB (2010) Size effect in compaction of nanopowders. Pis’ma v Zhurnal Technicheskoi Fiziki (Technical Physics Letters) 36(17):96 (in Russian)Google Scholar
  34. 34.
    Boltachev GS, Volkov NB (2011) Simulation of nanopowder compaction in terms of granular dynamics. Tech Phys 56(7):919–930CrossRefGoogle Scholar
  35. 35.
    Kaygorodov AS, Ivanov VV, Paranin SN, Nozdrin AA (2007) The role of adsorbed species on pulse pressing of oxides. Rossiiskie Nanotechnologii 2(1–2):112–118 (in Russian)Google Scholar
  36. 36.
    Guzeyev VV (1995) Temperature control of zirconia ceramics sintering. Glas Ceram 10:25–29 (in Russian)Google Scholar
  37. 37.
    Chelluri B, Knoth E (2010) 4th international conference on high speed forming. ColumbusGoogle Scholar
  38. 38.
    Lee GH, Rhee CK, Lee MK, Kim WW, Ivanov VV (2004) Nanostructures and mechanical properties of copper compacts prepared by magnetic pulsed compaction method. Mater Sci Eng A 375–377(15):604–608CrossRefGoogle Scholar
  39. 39.
    Rhee CK, Lee GH, Kim WW, Ahn JH, Hahn YD (2003) Correlation between structure and mechanical properties for nano-crystalline copper prepared by pulsed compaction. J Metastable Nanocryst Mater 15–16:757–763CrossRefGoogle Scholar
  40. 40.
    Lee GH, Rhee CK, Kim KH (2003) The effect of compaction temperature and pressure on the pores in nanostructured metal compacts prepared by magnetic pulsed compaction. Metals Mater Int 9(4):375–378CrossRefGoogle Scholar
  41. 41.
    Han YS, Seong BS, Lee CH (2004) SANS study of microstructural inhomogeneities on Al nano-powder compacts. Physica B Cond Matter 350(1–3):E1015–E1018CrossRefGoogle Scholar
  42. 42.
    Hong SJ, Lee GH, Rhee CK (2007) Magnetic pulsed compaction of ferromagnetic nano-powders for soft-magnetic core. Mater Sci Eng A 449–451(25):401–406CrossRefGoogle Scholar
  43. 43.
    Chelluri B (1994) Dynamic magnetic consolidation (DMC) process for powder consolidation of advanced materials. Mater Manuf Proc 9(6):1127–1142CrossRefGoogle Scholar
  44. 44.
    Chae HJ, Kim YD, Kim TS (2011) Microstructure and mechanical properties of rapidly solidified Mg alloy powders compacted by magnetic pulsed compaction (MPC) method. J Alloys Compd 509(1):S250–S253CrossRefGoogle Scholar
  45. 45.
    Banin VE, Boehme R, Schumacher G, Vikhrev A (1995) Dynamic compaction of nanosized ceramic oxide powders. Mater Sci Forum 225–227:623–628Google Scholar
  46. 46.
    Ivanov VV, Khrustov VR (1998) Inorg Mater 34(4):39–43 (in Russian)Google Scholar
  47. 47.
    Kaygorodov A, Rhee C, Kim W, Ivanov V, Paranin S, Spirin A, Khrustov V (2007) Nozzles from alumina ceramics with submicron structure fabricated by radial pulsed compaction. Mater Sci Forum 534–536:1053–1056CrossRefGoogle Scholar
  48. 48.
    Hong SJ, Lee JK, Lee MK, Sung JH, Lee CG, You YZ (2006) Consolidation of Al2O3 nanopowder by magnetic pulsed compaction and sintering. Solid State Phenom 118:615–622CrossRefGoogle Scholar
  49. 49.
    Hong SJ, Koo JM, Lee JG (2009) Precompaction effects on density and mechanical properties of Al2O3 nanopowder compacts fabricated by magnetic pulsed compaction. Mater Trans 50(12):2885–2890CrossRefGoogle Scholar
  50. 50.
    Lee J, Hong SJ, Lee MK, Sung JH, Lee CG, You YZ (2006) Fabrication of high-density nanostructured alumina by the combined processes of magnetic pulsed compaction (MPC) and Spark Plasma Sintering (SPS). Solid State Phenom 118:597–602CrossRefGoogle Scholar
  51. 51.
    Dyatlova YG, Rumyantsev VI, Ordan’yan SS, Osmakov AS, Zayats SV, Ivanov VV, Paranin SN (2013) Website of “Virial”, Ltd. (electronic source, free access): (in Russian)
  52. 52.
    Ivanov VV, Paranin SN, Khrustov VR (2002) Nanostructured ceramics based on aluminum and zirconium oxides produced using magnetic pulsed pressing. Phys Metals Metallogr 94(1):S98–S106Google Scholar
  53. 53.
    Banin VE, Paranin S, Khrustov V, Medvedev A, Shtol'ts A (2002) Processing of nanostructured oxide ceramics with magnetic pulsed compaction technique. Key Eng Mater 206–213:377–380Google Scholar
  54. 54.
    Lee JG, Hong SJ, Park JJ (2010) Fabrication of an yttria thin-wall tube by radial magnetic pulsed compaction of powder-based tapes. Mater Trans 51(9):1689–1693CrossRefGoogle Scholar
  55. 55.
    Lee JK, Hong SJ, Lee MK, Rhee CK (2007) Fabrication of high density Y2O3 ceramics by magnetic pulsed compaction. Solid State Phenom 119:175–178CrossRefGoogle Scholar
  56. 56.
    Ivanov VV, Kaigorodov AS, Khrustov VR, Paranin SN, Spirin AV (2006) High-strength alumina-based ceramics produced by magnetic pulsed compaction of composite nanopowders. Rossiiskie Nanotechnologii 1(1–2):201–207 (in Russian)Google Scholar
  57. 57.
    Lee JG, Lee MK, Hong SJ, Lee HW, Pyun SP, Rhee CK (2010) Consolidation of mixed diamond and cobalt granule powders by magnetic pulsed compaction. Mater Lett 64(1):35–37CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eugene A. Olevsky
    • 1
  • Dina V. Dudina
    • 2
  1. 1.College of EngineeringSan Diego State UniversitySan DiegoUSA
  2. 2.Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations