Microwave Sintering

  • Eugene A. Olevsky
  • Dina V. Dudina


In this chapter, the principles and mechanisms of microwave heating and sintering are described. The method of effective medium approximation for the determination of effective microwave dielectric properties is introduced. Principles of self-consistent electromagnetic and thermal modeling are described. Experimental evidence of microwave nonthermal effects and the respective models of microwave nonthermal effects are described. Models of microwave sintering taking into account the influence of ponderomotive forces are explained. Examples of fully coupled electromagnetic–thermal–mechanical finite element modeling of relative density and temperature fields during microwave sintering are presented. Grain growth during microwave sintering is discussed. Selected examples of materials consolidated by microwave sintering are presented.


Susceptor Direct heating Hybrid heating Effective medium approximation Modeling Grain growth Nonthermal effect 


  1. 1.
    Zong L, Zhou S, Sgriccia N, Hawley MC, Kempel LC (2003) A review of microwave-assisted polymer chemistry (MAPC). J Microw Power Electromagn Energy 38(1):49–74CrossRefGoogle Scholar
  2. 2.
    Venkatesh MS, Raghavan GSV (2004) An overview of microwave processing and dielectric properties of agri-food materials. Biosyst Eng 88(1):1–18CrossRefGoogle Scholar
  3. 3.
    Vongpradubchai V, Rattanadecho P (2009) The microwave processing of wood using a continuous microwave belt drier. J Chem Eng Process: Process Intensification 48(5):997–1003CrossRefGoogle Scholar
  4. 4.
    Clark DE, Folz DC, Folgar CE, Mahmoud MM (eds) (2005) Microwave solutions for ceramic engineers. American Ceramic Society, WestervilleGoogle Scholar
  5. 5.
    Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA (1999) Synthesis of inorganic solids using microwaves. Chem Mater 11(4):882–895CrossRefGoogle Scholar
  6. 6.
    Makino Y, Ohmae T, Setsuhara Y, Miyake S, Sano S (1999) Sintering of Al2O3 – ZrO2 composites using millimeter-wave radiation. Key Eng Mat 161–163:41–44Google Scholar
  7. 7.
    Gupta M, Leong EWW (2007) Microwaves and metals. Wiley Asia, SingaporeCrossRefGoogle Scholar
  8. 8.
    Mondal A (2011) Microwave sintering of metals. Lambert Academic Publishing, SaarbrückenGoogle Scholar
  9. 9.
    Oda SJ (1992) Microwave remediation of hazardous waste: a review. In: Beatty RL, Sutton WH, Iskander MF (eds) Microwave processing of materials III, Materials Research Society Symposium Proceedings, vol 269. Materials Research Society, Pittsburgh, pp 453–464Google Scholar
  10. 10.
    Zhang SL, Buchta R, Sigurd D (1994) Rapid thermal processing with microwave heating. Thin Solid Films 246(1–2):151–157Google Scholar
  11. 11.
    Alford TL, Thompson DC, Mayer JW, David Theodore N (2009) Dopant activation in ion implanted silicon by microwave annealing. J Appl Phys 106:114902CrossRefGoogle Scholar
  12. 12.
    Janney MA, Kimrey HD, Allen WR, Kiggans JO (1997) Enhanced diffusion in sapphire during microwave heating. J Mater Sci 32:1347–1355CrossRefGoogle Scholar
  13. 13.
    Whittaker AG (2005) Diffusion in microwave-heated ceramics. Chem Mater 17:3426–3432CrossRefGoogle Scholar
  14. 14.
    Robb GR, Harrison A, Whittaker AG (2002) Temperature-resolved, in-situ powder X-ray diffraction of silver iodide under microwave irradiation. Phys Chem Comm 5:135–137Google Scholar
  15. 15.
    Osepchuk JM (1984) A history of microwave heating applications. IEEE Trans Microwave Theory Tech 32(9):1200–1224CrossRefGoogle Scholar
  16. 16.
    Tinga WR, Voss WAG (1968) Microwave power engineering. Academic Press, New YorkGoogle Scholar
  17. 17.
    Berteaud AJ, Badot JC (1976) High temperature microwave heating in refractory materials. J Microw Power 11(4):315–320CrossRefGoogle Scholar
  18. 18.
    Meek TT, Holcombe CE, Dykes N (1987) Microwave sintering of some oxide materials using sintering aids. J Mater Sci Lett 6(8):1060–1062CrossRefGoogle Scholar
  19. 19.
    Lynn Johnson D (1991) Microwave and plasma sintering of ceramics. Ceram Int 17:295–300CrossRefGoogle Scholar
  20. 20.
    Wang J, Binner JGP, Vaidhyanathan B, Joomun N, Kilner J, Dimitrakis G, Cross TE (2006) Evidence for the microwave effect during hybrid sintering. J Amer Ceram Soc 89(6):1977–1984CrossRefGoogle Scholar
  21. 21.
    Birnboim A, Gershon D, Calame J, Birman A, Carmel Y, Rodgers J, Levush B, Bykov Y, Eremeev A, Holoptsev V, Semenov V, Dadon D, Martin P, Rosen M, Hutcheon R (1998) Comparative study of microwave sintering of zinc oxide at 2.45, 30 and 83 GHz. J Amer Ceram Soc 81:1493–1501CrossRefGoogle Scholar
  22. 22.
    Katz JD (1992) Microwave sintering of ceramics. Annu Rev Mater Sci 22:153–170CrossRefGoogle Scholar
  23. 23.
    Clark D, Sutton WH (1996) Microwave processing of materials. Annu Rev Mater Sci 26:299–331CrossRefGoogle Scholar
  24. 24.
    Agrawal DK (1998) Microwave processing of ceramics: a review. Curr Opin Solid State Mater Sci 3(5):480–486CrossRefGoogle Scholar
  25. 25.
    Binner JGP, Vaidhyanathan B (2004) Microwave sintering of ceramics: what does it offer? Key Eng Mater 264–268:725–730CrossRefGoogle Scholar
  26. 26.
    Binner JGP, Annapoorani K, Paul A, Santacruz I, Vaidhyanathan B (2008) Dense nanostructured zirconia by two stage conventional/hybrid microwave sintering. J Eur Ceram Soc 28:973–977CrossRefGoogle Scholar
  27. 27.
    Chen LW, Wang XH (2000) Sintering dense nanocrystalline oxide without final stage grain growth. Nature 404:168–171CrossRefGoogle Scholar
  28. 28.
    Willert-Porada M, Borchert R (1997) Microwave sintering of metal-ceramic FGM. In: Shiota I, Miyamoto Y (eds) Functionally graded materials. Elsevier, Amsterdam, pp 349–354Google Scholar
  29. 29.
    Gerdes T, Willert-Porada M (1994) Microwave sintering of metal-ceramic and ceramic-ceramic composites. In: Iskander MF, Sutton WH, Lauf RJ (eds) Microwave processing of materials IV, Materials Research Society Symposium Proc, vol 347. Materials Research Society, Pittsburgh, pp 531–538Google Scholar
  30. 30.
    Roy R, Agrawal D, Cheng J, Gedevanishvili S (1999) Full sintering of powdered-metal bodies in a microwave field. Nature 399:668–670CrossRefGoogle Scholar
  31. 31.
    Rybakov KI, Olevsky EA, Krikun EV (2013) Microwave sintering: fundamentals and modeling. J Amer Ceram Soc 96(4):1003–1020CrossRefGoogle Scholar
  32. 32.
    Troch PA, Vandersteene F, Su Z, Hoeben R, Wuethrich M (1996) Estimating microwave observation depth in bare soil through multi-frequency scatterometry. Proc 1st EMSL User Workshop. Ispra, Italy, SAI, JRCGoogle Scholar
  33. 33.
    Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33(10):3125–3131CrossRefGoogle Scholar
  34. 34.
    Ishizaki K, Battabyal M, Pittini YY, Nicula R, Vaucher S (2010) Microwave sintering explored by X-ray microtomography. In: Bordia RK, Olevsky EA (eds) Advances in sintering science and technology, ceramic transactions, vol 209. The American Ceramic Society, Westerville, pp 211–217Google Scholar
  35. 35.
    Penn SJ, Alford NM, Templeton A, Wang X, Xu M, Reece M, Schrapel K (1997) Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J Amer Ceram Soc 80(7):1885–1888CrossRefGoogle Scholar
  36. 36.
    Bruggeman DAG (1935) Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektriziätskonstanten und Leitfähigkeitender Mischkörper aus Isotropen Substanzen. Ann Phys-Berlin Series 5(24):636–679CrossRefGoogle Scholar
  37. 37.
    Rybakov KI, Semenov VE, Egorov SV, Eremeev AG, Plotnikov IV, Bykov YV (2006) Microwave heating of conductive powder materials. J Appl Phys 99:023506CrossRefGoogle Scholar
  38. 38.
    Buchelnikov VD, Louzguine-Luzgin DV, Xie G, Li S, Yoshikawa N, Sato M, Anzulevich AP, Bychkov IV, Inoue A (2008) Heating of metallic powders by microwaves: experiment and theory. J Appl Phys 104:113505CrossRefGoogle Scholar
  39. 39.
    Cheng J, Roy R, Agrawal D (2002) Radically different effects on materials by separated microwave electric and magnetic fields. Mater Res Innovat 5:170–177CrossRefGoogle Scholar
  40. 40.
    Bhattacharya M, Basak T (2008) Generalized scaling on forecasting heating patterns for microwave processing. AIChE J 54(1):56–73CrossRefGoogle Scholar
  41. 41.
    Egorov SV, Rybakov KI, Semenov VE, Bykov YV, Kanygina ON, Kulumbaev EB, Lelevkin VM (2007) Role of convective heat removal and electromagnetic field structure in the microwave heating of materials. J Mater Sci 42:2097–2104CrossRefGoogle Scholar
  42. 42.
    Birnboim A, Olorunyolemi T, Carmel Y (2001) Calculating the thermal conductivity of heated powder compacts. J Amer Ceram Soc 84(6):1315–1320CrossRefGoogle Scholar
  43. 43.
    Olorunyolemi T, Birnboim A, Carmel Y, Wilson OC, Lloyd IK (2002) Thermal conductivity of zinc oxide: from green to sintered state. J Amer Ceram Soc 85(5):1249–1253CrossRefGoogle Scholar
  44. 44.
    Tian YL, Black WM, Sa’adaldin HS, Ahmad I, Silberglitt R (1995) Dynamic model for electromagnetic field and heating patterns in loaded cylindrical cavities. In: Clark DE, Folz DC, Oda SJ, Silberglitt R (eds) Microwaves: theory and application in materials processing III, ceramic transactions, vol 59. The American Ceramic Society, Westerville, pp 261–268Google Scholar
  45. 45.
    Peng H, Tinga WR, Sundararaj U, Eadie RL (2003) Microwave sintering process model. J Microw Power Electromagn Energy 38(4):243–258CrossRefGoogle Scholar
  46. 46.
    Lasri J, Ramesh PD, Schachter L (2000) Energy conversion during microwave sintering of a multiphase ceramic surrounded by a susceptor. J Amer Ceram Soc 83(6):1465–1468CrossRefGoogle Scholar
  47. 47.
    Duan Y, Sorescu DC, Johnson JK (2006) Finite element approach to microwave sintering of oxide materials. Proc COMSOL Users Conference, BostonGoogle Scholar
  48. 48.
    Santos T, Valente MA, Monteiro J, Sousa J, Costa LC (2011) Electromagnetic and thermal history during microwave heating. Appl Therm Eng 31(16):3255–3261CrossRefGoogle Scholar
  49. 49.
    Roussy G, Chenot P, Colin P, Thiebaut JM (1980) Control of microwave-heating of granular materials. Thermochim Acta 41(2):225–236 (in French)CrossRefGoogle Scholar
  50. 50.
    Roussy G, Mercier J (1985) Temperature runaway of microwave heated materials: study and control. J Microw Power 20(1):47–51CrossRefGoogle Scholar
  51. 51.
    Roussy G, Bennani A, Thiebaut JM (1987) Temperature runaway of microwave irradiated materials. J Appl Phys 62(4):1167–1170CrossRefGoogle Scholar
  52. 52.
    Coleman CJ (1991) On the microwave hotspot problem. J Aust Math Soc Series B-Applied Mathematics 33:1–8CrossRefGoogle Scholar
  53. 53.
    Fliflet AW (2008) Self-consistent electromagnetic-thermal model for calculating the temperature of a ceramic cylinder irradiated by a high-power millimeter-wave beam. IEEE Trans Plasma Sci 36(3):582–590CrossRefGoogle Scholar
  54. 54.
    Parris PE, Kenkre VM (1997) Thermal runaway in ceramics arising from the temperature dependence of the thermal conductivity. Phys Status Solidi B 200(1):39–47CrossRefGoogle Scholar
  55. 55.
    Alliouat M, Lecluse Y, Massieu J, Mazo L (1990) Control algorithm for microwave sintering in a resonant system. J Microw Power Electromagn Energy 25(1):25–31CrossRefGoogle Scholar
  56. 56.
    Liu B, Marchant TR (2002) The occurrence of limit-cycles during feedback control of microwave heating. Math Comput Model 35(9–10):1095–1118CrossRefGoogle Scholar
  57. 57.
    Beale GO, Arteaga FJ, Black WM (1992) Design and evaluation of a controller for the process of microwave joining of ceramics. IEEE Trans Ind Electron 39(4):301–312CrossRefGoogle Scholar
  58. 58.
    Rybakov KI, Semenov VE (1996) Densification of powder materials in nonuniform temperature fields. Phil Mag A 73(2):295–307CrossRefGoogle Scholar
  59. 59.
    Zharova NA, Rybakov KI, Semenov VE, Egorov SV (2001) Computer simulation of millimeter-wave sintering of ceramic and composite materials. In: Clark DE, Sutton WH, Lewis DA (eds) Microwaves: theory and application in material processing V, ceramic transactions, vol 111. The American Ceramic Society, Westerville, pp 11–18Google Scholar
  60. 60.
    Birnboim A, Carmel Y (1999) Simulation of microwave sintering of ceramic bodies with complex geometry. J Amer Ceram Soc 82(11):3024–3030CrossRefGoogle Scholar
  61. 61.
    Egorov SV, Zharova NA, Bykov YV, Semenov VE (2006) Microwave sintering of large-size ceramic workpieces. In: Willert-Porada M (ed) Advances in microwave and radio frequency processing, Proc 8th Int Conf Microwave and High-Frequency Heating. Springer, Berlin–Heidelberg–New York, pp 577–582CrossRefGoogle Scholar
  62. 62.
    Bouvard D, Charmond S, Carry CP (2010) Finite element modelling of microwave sintering. In: Bordia RK, Olevsky EA (eds) Advances in sintering science and technology, ceramic transactions, vol 209. The American Ceramic Society, Westerville, pp 173–180Google Scholar
  63. 63.
    Su H, Johnson DL (1996) Master sintering curve: a practical approach to sintering. J Amer Ceram Soc 79(12):3211–3217CrossRefGoogle Scholar
  64. 64.
    Bykov YV, Egorov SV, Eremeev AG, Plotnikov IV, Rybakov KI, Semenov VE, Sorokin AA, Holoptsev VV (2012) Fabrication of metal-ceramic functionally graded materials by microwave sintering. Inorg Mater Appl Res 3(3):261–269CrossRefGoogle Scholar
  65. 65.
    Chatterjee A, Basak T, Ayappa KG (1998) Analysis of microwave sintering of ceramics. AIChE J 44(10):2302–2311CrossRefGoogle Scholar
  66. 66.
    Darcovich K, Whitfield PS, Amow G, Shinagawa K, Miyahara RY (2005) A microstructure based numerical simulation of microwave sintering of specialized SOFC materials. J Eur Ceram Soc 25:2235–2240CrossRefGoogle Scholar
  67. 67.
    Riedel R, Svoboda J (2006) Simulation of microwave sintering with advanced sintering models. In: Willert-Porada M (ed) Advances in microwave and radio frequency processing. Springer, Berlin, pp 210–216CrossRefGoogle Scholar
  68. 68.
    Rothman SJ (1994) Critical assessment of microwave-enhanced diffusion. In: Iskander MF, Lauf RJ, Sutton WH (eds) Microwave processing of materials IV, Materials Research Society Symposium Proceedings, vol 347. Materials Research Society, Pittsburgh, pp 9–18Google Scholar
  69. 69.
    Beruto D, Botter R, Searcy AW (1989) Influence of temperature gradients on sintering: experimental tests of a theory. J Amer Ceram Soc 72:232–235CrossRefGoogle Scholar
  70. 70.
    Young RM, McPherson R (1989) Temperature-gradient-driven diffusion in rapid-rate sintering. J Amer Ceram Soc 72:1080–1081CrossRefGoogle Scholar
  71. 71.
    Olevsky E, Froyen L (2009) Impact of thermal diffusion on densification during SPS. J Amer Ceram Soc 92S:122–132CrossRefGoogle Scholar
  72. 72.
    Bykov YV, Eremeev AE, Holoptsev VV (1994) Experimental study of the non-thermal effect in microwave sintering of piezoceramics. In: Iskander MF, Lauf RJ, Sutton WH (eds) Microwave processing of materials IV, Materials Research Society Symposium Proceedings, vol 347. Materials Research Society, Pittsburgh, pp 585–590Google Scholar
  73. 73.
    Meek TT (1987) Proposed model for the sintering of a dielectric in a microwave field. J Mater Sci Lett 6:638–640CrossRefGoogle Scholar
  74. 74.
    Johnson DL (1991) Microwave heating of grain boundaries in ceramics. J Amer Ceram Soc 74:849–850CrossRefGoogle Scholar
  75. 75.
    Endicott MR, Kenkre VM, Kus M (1994) Theory of a confinement effect of dipole rotations resulting in saturation in microwave heating of ceramics. Phys Stat Sol (b) 184(1):99–111CrossRefGoogle Scholar
  76. 76.
    Stuerga DAC, Gaillard P (1996) Microwave athermal effects in chemistry: a myth’s autopsy. J Microw Power Electromagn Energy 31:87–113CrossRefGoogle Scholar
  77. 77.
    Booske JH, Cooper RF (2006) How the coupling of microwave and RF energy in materials can affect solid state charge and mass transport and result in unique processing effects. In: Willert-Porada M (ed) Advances in microwave & radio frequency processing. Springer, Berlin, pp 461–471CrossRefGoogle Scholar
  78. 78.
    Janney MA, Kimrey HD, Schmidt MA, Kiggans JO (1991) Grain growth in microwave-annealed alumina. J Amer Ceram Soc 74(7):1675–1681CrossRefGoogle Scholar
  79. 79.
    Binner JGP, Hassine NA, Cross TE (1995) The possible role of the pre-exponential factor in explaining the increased reaction rates observed during the microwave synthesis of titanium carbide. J Mater Sci 30:5389–5393CrossRefGoogle Scholar
  80. 80.
    Eremeev AG, Plotnikov IV, Rybakov KI, Bykov YV, Rachkovskii AI (2007) Comparative study of diffusion rates during lead titanate synthesis under microwave and conventional heating. In: Silaghi AM, Gordan IM (eds) Proc 11th Int Conf Microwave and high frequency heating. Editura Universitatii din Oradea, Oradea, Romania, pp 232–235Google Scholar
  81. 81.
    Bykov YV, Eremeev AG, Zharova NA, Plotnikov IV, Rybakov KI, Drozdov MN, Drozdov YN, Skupov VD (2003) Diffusion processes in semiconductor structures during microwave annealing. Radiophys Quantum Electron 46(8–9):749–755CrossRefGoogle Scholar
  82. 82.
    Kimura H, Yamazaki Y (2006) Millimeter wave thermo-mechanical processing for bulk nanocrystalline ceramics. In: Proc International Microwave Power Institute’s 40th Annual Symposium, pp 52–55Google Scholar
  83. 83.
    Egorov SV, Eremeev AG, Plotnikov IV, Sorokin AA, Bykov YV, Chuvil’deev VN, Gryaznov MY, Shotin SV (2008) Plastic deformation of ultrafine alumina ceramics under microwave heating. In: Proc. Global Congress on Microwave energy applications. Japan Society of Electromagnetic Wave Energy Applications, Tokyo, Japan, pp 65–68Google Scholar
  84. 84.
    Lee JN, Choi YW, Lee BJ, Ahn BT (1997) Microwave-induced low-temperature crystallization of amorphous silicon thin films. J Appl Phys 82:2918–2921CrossRefGoogle Scholar
  85. 85.
    Rowley AT, Wroe R, Vazquez-Navarro D, Lo W, Cardwell DA (1997) Microwave-assisted oxygenation of melt-processed bulk YBa2Cu3O7-δ ceramics. J Mater Sci 32:4541–4547CrossRefGoogle Scholar
  86. 86.
    Wilson DA, Lee KY, Case ED (1997) Diffusive crack-healing behavior in polycrystalline alumina: a comparison between microwave annealing and conventional annealing. Mater Res Bull 32:1607–1616CrossRefGoogle Scholar
  87. 87.
    Get’man OI, Panichkina VV, Radchenko PY, Samelyuk AV, Skorokhod VV, Eremeev AG, Plotnikov IV, Matsokin VP (2008) Effect of microwave heating on diffusion in KCl–KBr single crystals. Powd Metall Metal Ceram 47(11–12):660–668CrossRefGoogle Scholar
  88. 88.
    Joomun NI, Kilner JA, Wang J, Vaidhyanathan B, Binner JGP (2003) Microwave hybrid annealing and its effect on oxygen diffusion in yttria-stabilized zirconia polycrystals. In: Proc 9th Int Conf on MW & HF Heating, Loughborough, UK, pp 405–408Google Scholar
  89. 89.
    Bykov Y, Eremeev A, Holoptsev V (1996) Influence of specific absorbed microwave power on activation energy of densification in ceramic materials. In: Iskander MF, Kiggans JO, Bolomey JC (eds) Microwave processing of materials V, Materials Research Society Symposium Proceedings, vol 430. Materials Research Society, Pittsburgh, pp 385–390Google Scholar
  90. 90.
    Wroe R, Rowley AT (1996) Evidence for a non-thermal microwave effect in the sintering of partially stabilized zirconia. J Mater Sci 31:2019–2026CrossRefGoogle Scholar
  91. 91.
    Binner J, Vaidhyanathan B, Wang J, Price D, Reading M (2008) Evidence for non-thermal microwave effects using single and multimode hybrid conventional/microwave systems. J Microw Power Electromagn Energy 42(2):47–63CrossRefGoogle Scholar
  92. 92.
    Willert-Porada M (1997) A microstructural approach to the origin of ‘microwave effects’ in sintering of ceramics and composites. In: Clark DE, Sutton WH, Lewis DA (eds) Microwaves: theory and application in materials processing IV, ceramic transactions, vol 80. The American Ceramic Society, Westerville, pp 153–164Google Scholar
  93. 93.
    Lange FF (1984) Sinterability of agglomerated powders. J Amer Ceram Soc 67(2):83–89CrossRefGoogle Scholar
  94. 94.
    Willert-Porada M (1996) Microwave effects on spinodal decomposition. In: Iskander MF, Kiggans JO, Bolomey JC (eds) Microwave processing of materials V, Materials Research Society Symposium Proceedings, vol 430. Materials Research Society, Pittsburgh, pp 403–409Google Scholar
  95. 95.
    Li J, Huang Y, Xie Z (1996) Microwave interaction with ceramics and its application to spinodal decomposition. In: Koumoto K, Sheppard LM, Matsubara H (eds) Mass and charge transport in ceramics, ceramic transactions, vol 71. The American Ceramic Society, Westerville, pp 259–268Google Scholar
  96. 96.
    Get’man OI, Panichkina VV, Radchenko PY, Skorokhod VV, Andreeva MG, Eremeev AG, Kholoptsev VV (2009) Diffusion processes and structurization in microwave sintering of BaTiO3–SrTiO3 and Al2O3–Cr2O3 powder systems with complete miscibility. Powd Metall Metal Ceram 48(5–6):279–289CrossRefGoogle Scholar
  97. 97.
    Thakur OP, Prakash C, Agrawal DK (2002) Dielectric behavior of Ba0.95Sr0.05TiO3 ceramics sintered by microwave. J Mater Sci Eng B 96:221–225CrossRefGoogle Scholar
  98. 98.
    Bykov YV, Egorov SV, Eremeev AG, Rybakov KI, Semenov VE, Sorokin AA, Gusev SA (2001) Evidence for microwave enhanced mass transport in the annealing of nanoporous alumina membranes. J Mater Sci 36:131–136CrossRefGoogle Scholar
  99. 99.
    Egorov SV, Eremeev AG, Rybakov KI, Semenov VE, Sorokin AA, Gusev SA (2004) Microwave intensity-dependent mass transport enhancement in nanostructured alumina membranes. In: Folz DC, Booske JH, Clark DE, Gerling JF (eds) Microwave and radio frequency applications (Proc Third World Congress on Microwave and radio frequency applications). The American Ceramic Society, Westerville, pp 167–174Google Scholar
  100. 100.
    Link G, Miksch S, Takayama S, Thumm M (2006) Anisotropic sintering in polarized microwave fields – Evidence for non-thermal microwave effects. In: Proc. Joint 31st Int Conf Infrared Millimeter Waves and 14th Int Conf Teraherz Electronics, IRMMW-THz 2006, p 285Google Scholar
  101. 101.
    Rybakov KI, Semenov VE, Link G, Thumm M (2007) Preferred orientation of pores in ceramics under heating by a linearly polarized microwave field. J Appl Phys 101:084915CrossRefGoogle Scholar
  102. 102.
    Jones M, Valecillos MC, Hirao K, Brito ME, Toriyama M (2006) Sintering behaviour and mechanical properties of microwave sintered silicon nitride. In: Willert-Porada M (ed) Advances in microwave and radio frequency processing. Springer, Berlin, pp 562–569CrossRefGoogle Scholar
  103. 103.
    Jung YM, Kim SW (2008) Effect of magnesium addition on the phase transformation of α-alumina prepared from route of ammonium aluminum carbonate hydroxide. Solid State Phenom 135:139–142CrossRefGoogle Scholar
  104. 104.
    Vaidhyanathan B, Saremi-Yarahmadi S, Wijayanth KGU (2011) Fabrication of nanostructured α-Fe2O3 films for solar-driven hydrogen generation using hybrid heating. In: Mathur S, Widjaja S, Singh D (eds) Nanostructured materials and nanotechnology V, ceramic engineering and science proceedings, vol 32(7). Wiley, Hoboken, pp 11–22Google Scholar
  105. 105.
    Rybakov KI, Eremeev AG, Egorov SV, Bykov YV, Pajkic Z, Willert-Porada M (2008) Effect of microwave heating on phase transformations in nanostructured alumina. J Phys D Appl Phys 41:102008CrossRefGoogle Scholar
  106. 106.
    Roy R, Peelamedu R, Grimes C, Cheng J, Agrawal D (2002) Major phase transformations and magnetic property changes caused by electromagnetic fields at microwave frequencies. J Mater Res 17(12):3008–3011CrossRefGoogle Scholar
  107. 107.
    Roy R, Fang Y, Cheng J, Agrawal D (2005) Decrystallizing solid crystalline titania, without melting, using microwave magnetic fields. J Amer Ceram Soc 88(6):1640–1642CrossRefGoogle Scholar
  108. 108.
    Kashcheev VA, Poluektov PP (1991) The use of alternating electric field for the stimulation of diffusion flow of charged impurities. Sov Tech Phys Lett 17:577Google Scholar
  109. 109.
    Booske JH, Cooper RF, Dobson I (1992) Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solid. J Mater Res 7(2):495–501CrossRefGoogle Scholar
  110. 110.
    Bokhan YI (1992) Diffusion of charged impurities in high-frequency field. Sov Tech Phys Lett 18:339Google Scholar
  111. 111.
    Freeman SA, Booske JH, Cooper RF (1995) Microwave field enhancement of charge transport in sodium chloride. Phys Rev Lett 74:2042–2045CrossRefGoogle Scholar
  112. 112.
    Bokhan YI, Shkrob IA (1994) Synthesis in an RF field of a ceramic material with a structural phase transition. Tech Phys Lett 20(6):439Google Scholar
  113. 113.
    Hao HS, Xu LH, Huang Y, Zhang XM, Xie ZP (2009) Kinetics mechanism of microwave sintering in ceramic materials. Sci China – Series E Technol Sci 52(9):2727–2731CrossRefGoogle Scholar
  114. 114.
    Bergese P (2006) Specific heat, polarization and heat conduction in microwave heating systems: a nonequilibrium thermodynamic point of view. Acta Mater 54:1843–1849CrossRefGoogle Scholar
  115. 115.
    Rybakov KI, Semenov VE, Freeman SA, Booske JH, Cooper RF (1997) Dynamics of microwave-induced currents in ionic crystals. Phys Rev B 55(6):3559–3567CrossRefGoogle Scholar
  116. 116.
    Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New YorkGoogle Scholar
  117. 117.
    Manning JR (1968) Diffusion kinetics for atoms in crystals. Van Nostrand-Reinhold, PrincetonGoogle Scholar
  118. 118.
    Rybakov KI, Olevsky EA, Semenov VE (2012) The microwave ponderomotive effect on ceramic sintering. Scr Mater 66:1049–1052CrossRefGoogle Scholar
  119. 119.
    Olevsky EA, Maximenko AL, Grigoryev EG (2013) Ponderomotive effects during contact formation in microwave sintering. Modelling Simul Mater Sci Eng 21:055022CrossRefGoogle Scholar
  120. 120.
    Rybakov KI, Semenov VE, Link G, Thumm M (2007) Preferred orientations of pores in ceramics under heating by a linearly polarized microwave field. J Appl Phys 101:084915CrossRefGoogle Scholar
  121. 121.
    Calame JP, Rybakov KI, Carmel Y, Gershon D (1997) Electric field intensification in spherical neck ceramic microstructures during microwave sintering. In: Clark DE et al (eds) Microwaves: theory and application in materials processing IV, ceramic transactions, vol 80. The American Ceramic Society, Westerville, pp 135–142Google Scholar
  122. 122.
    Booske JH, Cooper RF, Freeman SA, Rybakov KI, Semenov VE (1998) Microwave ponderomotive forces in solid state ionic plasmas. Phys Plasmas 5(5):1664–1670CrossRefGoogle Scholar
  123. 123.
    Olevsky EA (1998) Theory of sintering: from discrete to continuum. Mater Sci Eng R 23(2):41–100CrossRefGoogle Scholar
  124. 124.
    Olevsky EA, Tikare V, Garino T (2006) Multi-scale study of sintering: a review. J Amer Ceram Soc 89(6):1914–1922CrossRefGoogle Scholar
  125. 125.
    Olevsky EA, Molinari A (2000) Instability of sintering of porous bodies. Int J Plasticity 16:1–37CrossRefGoogle Scholar
  126. 126.
    Rybakov KI, Semenov VE (1999) In: Vincenzini P (ed) Ceramics: getting into the 2000’s – part C (Proceedings of the 9th Cimtec – World Ceramic Congress). TechnaSrl, Faenza, pp 397–404Google Scholar
  127. 127.
    Ding L, Davidchack RL, Pan J (2009) A molecular dynamics study of sintering between nanoparticles. Comput Mater Sci 45:247–256CrossRefGoogle Scholar
  128. 128.
    Bachvalov NS, Panasenko GP (1989) Homogenization: averaging processes in periodic Media. Kluwer, DordrechtCrossRefGoogle Scholar
  129. 129.
    Bardzokas DI, Zobnin AI (2005) Mathematical modeling of physical processes in composite materials with periodical structure, Editorial URSS, Moscow, Russia, 336 pGoogle Scholar
  130. 130.
    Maximenko A, Olevsky E (2004) Effective diffusion coefficients in solid-state sintering. Acta Mater 52:2953–2963CrossRefGoogle Scholar
  131. 131.
    Rahaman MN (1995) Ceramic processing and sintering. Marcel Dekker Inc, New YorkGoogle Scholar
  132. 132.
    Hague DC, Mayo MJ (1999) Sinter-forging of nanocrystalline zirconia: II. Simulation J Amer Ceram Soc 82:545–555CrossRefGoogle Scholar
  133. 133.
    Raj R, Cologna M, Francis JSC (2011) Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. J Amer Ceram Soc 94(7):1941–1965CrossRefGoogle Scholar
  134. 134.
    Holcombe CE, Dykes NL (1990) Importance of “casketing” for microwave sintering of materials. J Mater Sci Lett 9:425–428CrossRefGoogle Scholar
  135. 135.
    Manière C, Zahrah T, Olevsky EA (2017) Inherent heating instability of direct microwave sintering process: sample analysis for porous 3Y-ZrO2. Scr Mater 128:49–52CrossRefGoogle Scholar
  136. 136.
    Manière C, Zahrah T, Olevsky EA (2017) Fully coupled electromagnetic-thermal-mechanical comparative simulation of direct vs hybrid microwave sintering of 3Y-ZrO2. J Amer Ceram Soc 100(6):2439–2450CrossRefGoogle Scholar
  137. 137.
    Charmond S, Carry CP, Bouvard D (2010) Densification and microstructure evolution of Y-Tetragonal Zirconia polycrystal powder during direct and hybrid microwave sintering in a single-mode cavity. J Eur Ceram Soc 30:1211–1221CrossRefGoogle Scholar
  138. 138.
    Agrawal D (2006) Microwave sintering, brazing and melting of metallic materials, Sohn International Symposium “Advanced processing of metals and materials volume 4 – New, improved and existing technologies: Non-ferrous materials extraction and processing. In: Kongoli F, Reddy RG (eds) TMS (The Minerals, Metals & Materials Society), pp 183–192Google Scholar
  139. 139.
    Anklekar RM, Bauer K, Agrawal DK, Roy R (2005) Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts. Powder Metall 48(1):39–46CrossRefGoogle Scholar
  140. 140.
    Bao R, Yi J (2014) Densification and alloying of microwave sintering, WC–8wt.%Co composites. Int J Refract Met Hard Mater 43:269–275CrossRefGoogle Scholar
  141. 141.
    Demirskyi D, Agrawal D, Ragulya A (2010) Neck growth kinetics during microwave sintering of copper. Scr Mater 62:552–555CrossRefGoogle Scholar
  142. 142.
    Schmidt J, Schubert T, Weißgärber T, Kieback B (2004) Microwave assisted sintering of metallic materials, Proc. Euro PM2004Google Scholar
  143. 143.
    Reddy Matli P, Ubaid F, Abdul Shakoor R, Parande G, Manakari G, Yusuf M, Mohamed Amer Mohamed A, Gupta M (2017) Improved properties of Al–Si3N4 nanocomposites fabricated through a microwave sintering and hot extrusion process. RSC Adv 7:34401–34410CrossRefGoogle Scholar
  144. 144.
    Parande G, Manakari V, Meenashisundaram GK, Gupta M (2016) Enhancing the hardness/compression/damping response of magnesium by reinforcing with biocompatible silica nanoparticulates. Int J Mater Res 107:1091–1099CrossRefGoogle Scholar
  145. 145.
    Penchal Reddy M, Ubaid F, Shakoor RA, Mohamed AMA, Madhuri W (2016) Structural and mechanical properties of microwave sintered Al-Ni50Ti50 composites. J Science: Adv Mater Devices 1:362–366Google Scholar
  146. 146.
    Prabhu G, Chakraborty A, Sarma B (2009) Microwave sintering of tungsten. Int J Refract Met Hard Mater 27:545–548CrossRefGoogle Scholar
  147. 147.
    Fang Y, Cheng J, Agrawal DK (2004) Effect of powder reactivity on microwave sintering of alumina. Mater Lett 58:498–501CrossRefGoogle Scholar
  148. 148.
    Demirskyi D, Vasylkiv O (2016) Microstructure and mechanical properties of boron suboxide ceramics prepared by pressureless microwave sintering. Ceram Int 42:14282–14286CrossRefGoogle Scholar
  149. 149.
    Benavente R, Salvador MD, Penaranda-Foix FL, Pallone E, Borrell A (2014) Mechanical properties and microstructural evolution of alumina–zirconia nanocomposites by microwave sintering. Ceram Int 40:11291–11297CrossRefGoogle Scholar
  150. 150.
    Danielle Sales Cunha Medeiros F, Menezes RR, Neves GA, Navarrode Lima Santana L, Sivini Ferreira H, Silva Guedes de Lima D, Jackson Guedes de Lima S (2015) Microwave-assisted sintering of dental porcelains. Ceram Int 41:7501–7510CrossRefGoogle Scholar
  151. 151.
    Monaco C, Prete F, Leonelli C, Esposito L, Tucci A (2015) Microstructural study of microwave sintered zirconia for dental applications. Ceram Int 41:1255–1261CrossRefGoogle Scholar
  152. 152.
    Zhang S, Shu X, Chen S, Yang H, Hou C, Mao X, Chi F, Song M, Lu X (2017) Rapid immobilization of simulated radioactive soil waste by microwave sintering. J Hazard Mater 337:20–26CrossRefGoogle Scholar
  153. 153.
    Oghbaei M, Mirzaee O (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compd 494:175–189CrossRefGoogle Scholar
  154. 154.
    Agrawal D (2006) Microwave sintering of ceramics, composites and metallic materials, and melting of glasses. Trans Indian Ceram Soc 65(3):129–144CrossRefGoogle Scholar
  155. 155.
    Zhao Y, Chen J (2008) Applications of microwaves in nuclear chemistry and engineering. Prog Nuclear Energy 50:1–6CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eugene A. Olevsky
    • 1
  • Dina V. Dudina
    • 2
  1. 1.College of EngineeringSan Diego State UniversitySan DiegoUSA
  2. 2.Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations